-
公开(公告)号:CN115842566B
公开(公告)日:2023-09-15
申请号:CN202211506619.0
申请日:2022-11-28
Applicant: 哈尔滨工程大学
IPC: H04B1/525 , G06N3/0464 , G06N3/0442 , G06N3/08 , G01S7/38 , G01S7/36
Abstract: 一种基于CNN‑Bi‑LSTM的干扰机自干扰数字对消方法,涉及电子侦察与干扰领域。本发明是为了解决目前的自干扰对消方法没有考虑时间记忆维度以外的非线性特征,进而导致其应用于干扰机自干扰对消中效果不佳的问题。本发明具体为:获取干扰机发射的参考信号和接收到的信号,将参考信号输入到自干扰估计网络中获得估计的自干扰,再将干扰机接收到的信号与估计的自干扰相减完成自干扰对消,获得自干扰对消后的信号;本发明提出的自干扰估计网络额外加入了记忆项对应的高阶非线性项,再结合Bi‑LSTM网络对记忆项进行时间依赖关系的前后双向拟合,提升了对于时间记忆维度以外的非线性特征的拟合效果。本发明用于干扰机自干扰的对消。
-
公开(公告)号:CN115842566A
公开(公告)日:2023-03-24
申请号:CN202211506619.0
申请日:2022-11-28
Applicant: 哈尔滨工程大学
IPC: H04B1/525 , G06N3/0464 , G06N3/0442 , G06N3/08 , G01S7/38 , G01S7/36
Abstract: 一种基于CNN‑Bi‑LSTM的干扰机自干扰数字对消方法,涉及电子侦察与干扰领域。本发明是为了解决目前的自干扰对消方法没有考虑时间记忆维度以外的非线性特征,进而导致其应用于干扰机自干扰对消中效果不佳的问题。本发明具体为:获取干扰机发射的参考信号和接收到的信号,将参考信号输入到自干扰估计网络中获得估计的自干扰,再将干扰机接收到的信号与估计的自干扰相减完成自干扰对消,获得自干扰对消后的信号;本发明提出的自干扰估计网络额外加入了记忆项对应的高阶非线性项,再结合Bi‑LSTM网络对记忆项进行时间依赖关系的前后双向拟合,提升了对于时间记忆维度以外的非线性特征的拟合效果。本发明用于干扰机自干扰的对消。
-