手指静脉特征提取与匹配识别方法

    公开(公告)号:CN101840511B

    公开(公告)日:2013-08-28

    申请号:CN201010191458.1

    申请日:2010-06-04

    Abstract: 本发明提供的是一种手指静脉特征提取与匹配识别方法。包括通过红外图像采集装置获取手指静脉图像,并对图像进行预处理,特征提取,识别分析步骤;所述预处理包括彩色图像进行灰度化、手指区域提取、采用方向滤波和增强、按照手指轮廓标记提取手指静脉纹路并二值化、采用面积消除法去噪、将图像的大小标准化为统一的图像;特征提取的方法为:对手指静脉纹路图进行子块划分,对于每个子块图像采用双向特征值加权分块的双向二维主成分分析的方法进行特征提取;识别分析是将各个子块的特征作为整体采用最近邻分类器进行识别。本发明可减少手指静脉识别中高维图像矩阵的计算量,可以明显地提高手指静脉的识别速度,识别率稳定、而且高。

    一种提取相位及方向特征的手指静脉识别方法

    公开(公告)号:CN101789076A

    公开(公告)日:2010-07-28

    申请号:CN201010101233.2

    申请日:2010-01-27

    Abstract: 本发明提供的是一种提取相位及方向特征的手指静脉识别方法。包括对手指静脉图像滤波、纹理特征提取、特征匹配、二维Gabor滤波器的参数的设置;对读入的手指静脉原图先采用二维Gabor滤波器进行滤波,分别提取相位和方向的纹理信息,并在特征级上进行融合,形成编码;最后采用改进的Hamming距离来衡量不同编码之间的相似性。本发明所提供的方法不要求对静脉图像做前期处理和定位,简单易行,更有利于提取静脉特征。并且本发明具有一定的抗平移和旋转性,能够快速准确的进行身份识别。

    手指静脉特征提取与匹配识别方法

    公开(公告)号:CN101840511A

    公开(公告)日:2010-09-22

    申请号:CN201010191458.1

    申请日:2010-06-04

    Abstract: 本发明提供的是一种手指静脉特征提取与匹配识别方法。包括通过红外图像采集装置获取手指静脉图像,并对图像进行预处理,特征提取,识别分析步骤;所述预处理包括彩色图像进行灰度化、手指区域提取、采用方向滤波和增强、按照手指轮廓标记提取手指静脉纹路并二值化、采用面积消除法去噪、将图像的大小标准化为统一的图像;特征提取的方法为:对手指静脉纹路图进行子块划分,对于每个子块图像采用双向特征值加权分块的双向二维主成分分析的方法进行特征提取;识别分析是将各个子块的特征作为整体采用最近邻分类器进行识别。本发明可减少手指静脉识别中高维图像矩阵的计算量,可以明显地提高手指静脉的识别速度,识别率稳定、而且高。

    基于特征值归一化双向加权的手指静脉识别方法

    公开(公告)号:CN101789075A

    公开(公告)日:2010-07-28

    申请号:CN201010100956.0

    申请日:2010-01-26

    Abstract: 本发明提供的是基于特征值归一化双向加权的手指静脉识别方法。(1)通过图像采集装置进行手指静脉图像的采集;(2)对采集的手指静脉图像进行预处理,所述预处理包括:彩色图像进行灰度化、手指区域提取、采用组合滤波器分别消除椒盐噪声和高斯噪声、采用局部动态阈值算法分割图像并二值化、然后采用面积消除法去噪、按照手指轮廓标记提取手指静脉脉络图像,最后将图像的大小标准化为统一的图像;(3)通过在行列两个方向上都加权的二维主成分分析算法提取手指静脉特征;(4)通过最近邻分类器进行匹配与识别。本发明用于手指静脉身份识别系统。明显地提高手指静脉的识别速度,识别率稳定、而且高。

    一种手指静脉特征提取于匹配识别方法

    公开(公告)号:CN101777117A

    公开(公告)日:2010-07-14

    申请号:CN201010101020.X

    申请日:2010-01-26

    Abstract: 本发明提供的是一种手指静脉特征提取于匹配识别方法。(1)通过图像采集装置进行手指静脉图像的采集;(2)对采集的手指静脉图像进行预处理,包括:彩色图像进行灰度化、手指区域提取、采用组合滤波器分别消除椒盐噪声和高斯噪声、采用局部动态阈值算法分割图像并二值化、然后采用面积消除法去噪、按照手指轮廓标记提取手指静脉脉络图像,最后将图像的大小标准化为统一的图像;(3)通过在行列两个方向上都加权的二维线性判别分析算法提取手指静脉特征;(4)通过最近邻分类器进行匹配与识别。本发明明显地提高了手指静脉的识别速度,识别率稳定且高。

    使用方向滤波技术的手指静脉纹路提取方法

    公开(公告)号:CN101667137B

    公开(公告)日:2012-09-26

    申请号:CN200910073045.0

    申请日:2009-10-12

    Abstract: 本发明提供的是一种使用方向滤波技术的手指静脉纹路提取方法。包括手指区域定位、滤波增强、手指静脉模式提取;对读入的静脉图像先采用Kapur熵阈值法分割出手指区域,然后采用数学形态学中的开操作对手指区域去除毛刺;再结合静脉纹路特点求取手指静脉区域的方向图并设计滤波器,结合所得的方向图及方向滤波器对图像进行滤波增强;最后采用NiBlack方法进行二值化操作提取手指静脉模式。本发明所提供的方法提取手指静脉纹路连通性与光滑性好、噪声少。

    指纹与指静脉双模态识别决策级融合法

    公开(公告)号:CN101901336B

    公开(公告)日:2012-03-14

    申请号:CN201010197432.8

    申请日:2010-06-11

    Abstract: 本发明提供的是一种指纹与指静脉双模态识别决策级融合法。包括指纹模块与静脉模块两个模块;指纹模块与静脉模块读取指纹图像与静脉图像;对读取的指纹与手指静脉图像依据各自图像的特点进行图像质量评价,得出质量分数;指纹图像与静脉图像分别进行预处理后进行识别,其中指纹识别采用基于细节点匹配的方法,静脉识别使用改进的Hausdorff距离方式进行识别,得到各自的识别结果;最后根据这两种模态的图像质量分数设计权重,根据这个权重将二者的识别结果进行决策级融合,得到最终识别结果。本发明基于融合后系统的性能优于单一的指纹识别或手指静脉识别系统,具有很强的实用性。

    基于特征值归一化双向加权的手指静脉识别方法

    公开(公告)号:CN101789075B

    公开(公告)日:2012-09-26

    申请号:CN201010100956.0

    申请日:2010-01-26

    Abstract: 本发明提供的是基于特征值归一化双向加权的手指静脉识别方法。(1)通过图像采集装置进行手指静脉图像的采集;(2)对采集的手指静脉图像进行预处理,所述预处理包括:彩色图像进行灰度化、手指区域提取、采用组合滤波器分别消除椒盐噪声和高斯噪声、采用局部动态阈值算法分割图像并二值化、然后采用面积消除法去噪、按照手指轮廓标记提取手指静脉脉络图像,最后将图像的大小标准化为统一的图像;(3)通过在行列两个方向上都加权的二维主成分分析算法提取手指静脉特征;(4)通过最近邻分类器进行匹配与识别。本发明用于手指静脉身份识别系统。明显地提高手指静脉的识别速度,识别率稳定、而且高。

    基于旋转校正的手指静脉图像感兴趣区域提取方法

    公开(公告)号:CN102663393A

    公开(公告)日:2012-09-12

    申请号:CN201210051702.3

    申请日:2012-03-02

    Abstract: 本发明的目的在于提供基于旋转校正的手指静脉图像感兴趣区域提取方法,首先对读入的手指静脉图像采用Kapur熵阈值法分割出手指区域;再求取图像的质心,以此作为旋转校正的依据,并由图像中每列像素竖直方向上的投影值与手指轮廓上、下边缘的内切线,确定出感兴趣区域的位置;最后对图像进行样本归一化操作,得到最终的处理结果。本发明为手指静脉图像采样过程中存在的旋转、平移等非线性因素对图像质量影响较大及手指静脉图像定位困难的问题提出新的解决思路,充分考虑手指静脉图像非接触式采集的特点,对采集到的图像进行基于旋转校正的感兴趣区域提取,有效地改善了采集图像质量所带来的影响,使识别结果更加可靠。

    一种手指静脉特征提取于匹配识别方法

    公开(公告)号:CN101777117B

    公开(公告)日:2012-02-01

    申请号:CN201010101020.X

    申请日:2010-01-26

    Abstract: 本发明提供的是一种手指静脉特征提取于匹配识别方法。(1)通过图像采集装置进行手指静脉图像的采集;(2)对采集的手指静脉图像进行预处理,包括:彩色图像进行灰度化、手指区域提取、采用组合滤波器分别消除椒盐噪声和高斯噪声、采用局部动态阈值算法分割图像并二值化、然后采用面积消除法去噪、按照手指轮廓标记提取手指静脉脉络图像,最后将图像的大小标准化为统一的图像;(3)通过在行列两个方向上都加权的二维线性判别分析算法提取手指静脉特征;(4)通过最近邻分类器进行匹配与识别。本发明明显地提高了手指静脉的识别速度,识别率稳定且高。

Patent Agency Ranking