基于轻量级神经网络的MIMO信号调制识别方法

    公开(公告)号:CN115499278B

    公开(公告)日:2024-06-04

    申请号:CN202211058165.5

    申请日:2022-08-30

    Abstract: 本发明属于数字信号调制技术领域,具体涉及基于轻量级神经网络的MIMO信号调制识别方法。本发明为了解决传统方法识别MIMO系统信号时,出现先验条件限制以及特征识别准确度低、分类器模型复杂等问题,设计了一种轻量级网络,并进而提供了基于轻量级神经网络的MIMO信号调制识别方法。本发明提出的轻量级网络在获得基带信号,无需对信号做额外处理,不依赖先验条件,通过多维度权重卷积在保证特征多维度选择提取的基础上,大幅度减少了卷积过程所需的参数和计算量,并通过注意力模块取代部分卷积过程,从而进一步提升网络训练结果的准确性,在保证MIMO系统信号精确识别的基础上为轻量级网络在工程实践中的应用提供了新的可行性方案。

    基于轻量级神经网络的MIMO信号调制识别方法

    公开(公告)号:CN115499278A

    公开(公告)日:2022-12-20

    申请号:CN202211058165.5

    申请日:2022-08-30

    Abstract: 本发明属于数字信号调制技术领域,具体涉及基于轻量级神经网络的MIMO信号调制识别方法。本发明为了解决传统方法识别MIMO系统信号时,出现先验条件限制以及特征识别准确度低、分类器模型复杂等问题,设计了一种轻量级网络,并进而提供了基于轻量级神经网络的MIMO信号调制识别方法。本发明提出的轻量级网络在获得基带信号,无需对信号做额外处理,不依赖先验条件,通过多维度权重卷积在保证特征多维度选择提取的基础上,大幅度减少了卷积过程所需的参数和计算量,并通过注意力模块取代部分卷积过程,从而进一步提升网络训练结果的准确性,在保证MIMO系统信号精确识别的基础上为轻量级网络在工程实践中的应用提供了新的可行性方案。

Patent Agency Ranking