-
公开(公告)号:CN102163281B
公开(公告)日:2012-08-22
申请号:CN201110104892.6
申请日:2011-04-26
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于AdaBoost框架和头部颜色的实时人体检测方法,包括训练及检测两个步骤;(1)根据模板提取多尺度HOG特征;(2)采用AdaBoost-Boosting方法训练人体检测模型;(3)提取头部颜色直方图特征;(4)采用AdaBoost方法训练头部判别模型;(5)基于滑动窗口方法的人体检测;(6)对于每个检测窗口,先提取HOG特征,根据人体检测模型判别是否是人体;(7)对于判别为人体的窗口,提取头部直方图特征,判断是否包含头部;包含头部的窗口确定为包含人体的窗口,在图像中相应位置画出矩形。本发明采用的特征单元是原HOG特征的Block,而且是多尺度的Block,并结合了特征模板,提高了检测效果;增加了头部特征判别以提高检测率。
-
公开(公告)号:CN102163281A
公开(公告)日:2011-08-24
申请号:CN201110104892.6
申请日:2011-04-26
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于AdaBoost框架和头部颜色的实时人体检测方法,包括训练及检测两个步骤;(1)根据模板提取多尺度HOG特征;(2)采用AdaBoost-Boosting方法训练人体检测模型;(3)提取头部颜色直方图特征;(4)采用AdaBoost方法训练头部判别模型;(5)基于滑动窗口方法的人体检测;(6)对于每个检测窗口,先提取HOG特征,根据人体检测模型判别是否是人体;(7)对于判别为人体的窗口,提取头部直方图特征,判断是否包含头部;包含头部的窗口确定为包含人体的窗口,在图像中相应位置画出矩形。本发明采用的特征单元是原HOG特征的Block,而且是多尺度的Block,并结合了特征模板,提高了检测效果;增加了头部特征判别以提高检测率。
-