-
公开(公告)号:CN112784576B
公开(公告)日:2022-07-29
申请号:CN202110039887.5
申请日:2021-01-13
Applicant: 哈尔滨工程大学 , 中电科大数据研究院有限公司
IPC: G06F40/211 , G06F40/289 , G06N3/04 , G06N3/08
Abstract: 本发明属于依存句法分析技术领域,具体涉及一种文本依存句法分析方法。依存句法树是关系提取工作所需的重要依据,依存句法分析的目的是构建依存句法树,依存句法分析的准确性直接影响着关系提取等上层工作的精度,为了提高依存句法分析的准确性,本发明提出了基于Pointer‑Net与TreeLSTM相结合的神经网络模型的一种文本依存句法分析方法,该方法可以在依存分析的过程中兼顾上下文的语义特征,在每一步的决策过程中都会考虑到已生成的依存子树,进而提高依存句法分析的精度。
-
公开(公告)号:CN112836046A
公开(公告)日:2021-05-25
申请号:CN202110039836.2
申请日:2021-01-13
Applicant: 哈尔滨工程大学
Abstract: 本发明属于命名实体识别技术领域,具体涉及一种四险一金领域政策法规文本实体识别方法。本发明通过预训练语言模型BERT得到每个字符基于上下文特征动态生成的具有上下文语义信息的字向量,通过word2vec中的skip‑gram模型得到每个词语的词向量,将具有上下文语义信息的字向量和其所在的词的词向量利用维度拼接的方式进行特征融合,得到联合字词向量,不仅可以弥补少量标注样本特征不足和字符语义提取不充分的问题,还为字向量补充了词级短语信息,从而在一定程度上提高模型的准确率。本发明可以有效解决四险一金领域命名实体识别任务中标注数据不足以及识别精度不高的问题。
-
公开(公告)号:CN111078833B
公开(公告)日:2022-05-20
申请号:CN201911223541.X
申请日:2019-12-03
Applicant: 哈尔滨工程大学
IPC: G06F16/33 , G06F16/35 , G06F40/30 , G06F40/284 , G06F40/289 , G06N3/04
Abstract: 本发明属于文本分类技术领域,具体涉及一种基于神经网络的文本分类方法。了解决传统文本分类方法不能同时有效的利用文本的语义信息和结构信息的问题,本发明可以提取文本的不同层次的语义信息和结构信息,包括单词级语义信息、单词级结构信息、短语级语义信息、短语级结构信息。为了得到文本的最终表示,本发明又提出两种融合方法来融合四种信息,分别是静态融合和基于注意力机制的动态融合。本发明基于神经网络,综合利用文本不同层次的语义信息和结构信息,提高了文本分类的准确率。
-
公开(公告)号:CN112784576A
公开(公告)日:2021-05-11
申请号:CN202110039887.5
申请日:2021-01-13
Applicant: 哈尔滨工程大学 , 中电科大数据研究院有限公司
IPC: G06F40/211 , G06F40/289 , G06N3/04 , G06N3/08
Abstract: 本发明属于依存句法分析技术领域,具体涉及一种文本依存句法分析方法。依存句法树是关系提取工作所需的重要依据,依存句法分析的目的是构建依存句法树,依存句法分析的准确性直接影响着关系提取等上层工作的精度,为了提高依存句法分析的准确性,本发明提出了基于Pointer‑Net与TreeLSTM相结合的神经网络模型的一种文本依存句法分析方法,该方法可以在依存分析的过程中兼顾上下文的语义特征,在每一步的决策过程中都会考虑到已生成的依存子树,进而提高依存句法分析的精度。
-
公开(公告)号:CN111078833A
公开(公告)日:2020-04-28
申请号:CN201911223541.X
申请日:2019-12-03
Applicant: 哈尔滨工程大学
IPC: G06F16/33 , G06F16/35 , G06F40/30 , G06F40/284 , G06F40/289 , G06N3/04
Abstract: 本发明属于文本分类技术领域,具体涉及一种基于神经网络的文本分类方法。了解决传统文本分类方法不能同时有效的利用文本的语义信息和结构信息的问题,本发明可以提取文本的不同层次的语义信息和结构信息,包括单词级语义信息、单词级结构信息、短语级语义信息、短语级结构信息。为了得到文本的最终表示,本发明又提出两种融合方法来融合四种信息,分别是静态融合和基于注意力机制的动态融合。本发明基于神经网络,综合利用文本不同层次的语义信息和结构信息,提高了文本分类的准确率。
-
-
-
-