一种四险一金领域政策法规文本实体识别方法

    公开(公告)号:CN112836046A

    公开(公告)日:2021-05-25

    申请号:CN202110039836.2

    申请日:2021-01-13

    Abstract: 本发明属于命名实体识别技术领域,具体涉及一种四险一金领域政策法规文本实体识别方法。本发明通过预训练语言模型BERT得到每个字符基于上下文特征动态生成的具有上下文语义信息的字向量,通过word2vec中的skip‑gram模型得到每个词语的词向量,将具有上下文语义信息的字向量和其所在的词的词向量利用维度拼接的方式进行特征融合,得到联合字词向量,不仅可以弥补少量标注样本特征不足和字符语义提取不充分的问题,还为字向量补充了词级短语信息,从而在一定程度上提高模型的准确率。本发明可以有效解决四险一金领域命名实体识别任务中标注数据不足以及识别精度不高的问题。

    一种基于神经网络的文本分类方法

    公开(公告)号:CN111078833B

    公开(公告)日:2022-05-20

    申请号:CN201911223541.X

    申请日:2019-12-03

    Abstract: 本发明属于文本分类技术领域,具体涉及一种基于神经网络的文本分类方法。了解决传统文本分类方法不能同时有效的利用文本的语义信息和结构信息的问题,本发明可以提取文本的不同层次的语义信息和结构信息,包括单词级语义信息、单词级结构信息、短语级语义信息、短语级结构信息。为了得到文本的最终表示,本发明又提出两种融合方法来融合四种信息,分别是静态融合和基于注意力机制的动态融合。本发明基于神经网络,综合利用文本不同层次的语义信息和结构信息,提高了文本分类的准确率。

    一种基于神经网络的文本分类方法

    公开(公告)号:CN111078833A

    公开(公告)日:2020-04-28

    申请号:CN201911223541.X

    申请日:2019-12-03

    Abstract: 本发明属于文本分类技术领域,具体涉及一种基于神经网络的文本分类方法。了解决传统文本分类方法不能同时有效的利用文本的语义信息和结构信息的问题,本发明可以提取文本的不同层次的语义信息和结构信息,包括单词级语义信息、单词级结构信息、短语级语义信息、短语级结构信息。为了得到文本的最终表示,本发明又提出两种融合方法来融合四种信息,分别是静态融合和基于注意力机制的动态融合。本发明基于神经网络,综合利用文本不同层次的语义信息和结构信息,提高了文本分类的准确率。

Patent Agency Ranking