融合全卷积神经网络与改进ASPP模块的场景分割方法

    公开(公告)号:CN110706239B

    公开(公告)日:2022-11-11

    申请号:CN201910914699.5

    申请日:2019-09-26

    Abstract: 本发明属于深度学习及机器视觉领域,具体涉及一种融合全卷积神经网络与改进ASPP模块的场景分割方法。本发明采用图像预处理操作能够防止模型过拟合,同时提高模型的适应能力;针对池化和下采样的重复组合的操作引起特征分辨率下降的问题,采用全卷积神经网络;在第五层卷积层后面加入改进的ASPP模块,融入图像级别的特征来捕获远距离信息,增加模型本身的适应能力;采用反卷积进行上采样,优势是可以自己学习参数;针对网络层数加深,边缘细节信息损失严重的问题,保留二倍下采样信息并与四倍上采样信息进行融合。

    改进型编码解码结构的全卷积神经网络语义分割方法

    公开(公告)号:CN110717921A

    公开(公告)日:2020-01-21

    申请号:CN201910914737.7

    申请日:2019-09-26

    Abstract: 本发明属于深度学习及机器视觉领域,具体涉及一种改进型编码解码结构的全卷积神经网络语义分割方法。本发明采用图像预处理操作不仅提高了模型的精度,而且也增强了模型的稳定性;针对池化和下采样的重复组合的操作引起特征分辨率下降的问题,采用全卷积神经网络,进而提高了语义分割的准确性;引用U-net模型结构的思想,采用编码-解码结构,保留了二倍和四倍下采样的特征信息,分别与四倍和二倍上采样特征信息进行融合,通过逐渐恢复空间信息来捕捉清晰的目标边界,解决了图像边缘分割不太准确的问题,同时提高了神经网络的收敛速度,节约了运行时间。

    融合全卷积神经网络与改进ASPP模块的场景分割方法

    公开(公告)号:CN110706239A

    公开(公告)日:2020-01-17

    申请号:CN201910914699.5

    申请日:2019-09-26

    Abstract: 本发明属于深度学习及机器视觉领域,具体涉及一种融合全卷积神经网络与改进ASPP模块的场景分割方法。本发明采用图像预处理操作能够防止模型过拟合,同时提高模型的适应能力;针对池化和下采样的重复组合的操作引起特征分辨率下降的问题,采用全卷积神经网络;在第五层卷积层后面加入改进的ASPP模块,融入图像级别的特征来捕获远距离信息,增加模型本身的适应能力;采用反卷积进行上采样,优势是可以自己学习参数;针对网络层数加深,边缘细节信息损失严重的问题,保留二倍下采样信息并与四倍上采样信息进行融合。

    一种机器人基于改进蚁群优化的线特征数据关联方法

    公开(公告)号:CN110119705A

    公开(公告)日:2019-08-13

    申请号:CN201910384163.7

    申请日:2019-05-09

    Abstract: 本发明属于数据关联领域,具体涉及一种机器人基于改进蚁群优化的线特征数据关联方法。包括以下步骤:构建全局坐标系和局部坐标系,设置传感器工作模式;建立线特征观测模型;采用改进分割-聚合方法提取环境线特征;设计改进ICNN方法与改进蚁群优化方法相结合的线特征数据关联方法;将传感器获得的环境线特征信息以及移动机器人位姿信息输入至基于改进蚁群优化的线特征数据关联方法中,进行数据关联,得到一个关联对集合,对地图特征集进行更新。首先基于激光传感器数据提取环境线特征,再将改进ICNN算法与改进蚁群优化算法相结合,提高了数据关联算法的关联正确率,得到精确的环境地图。

    一种基于避碰准则的多USV群体协同避碰规划方法

    公开(公告)号:CN109597417A

    公开(公告)日:2019-04-09

    申请号:CN201910033309.3

    申请日:2019-01-14

    Abstract: 本发明属于USV控制技术领域,具体涉及一种基于避碰准则的多USV群体协同避碰规划方法。该方法包括:步骤1、制定合理的USV避碰规则;步骤2、多USV系统建模,计算运动参数和碰撞危险度;步骤3、构建USV避碰规划仿真软件平台,添加雷达探测模块和遗传算法,设计典型的仿真案例验证算法的有效性。本发明使多个USV从起点出发躲避环境中所有静态障碍物到达终点,在整个航行过程中USV之间不发生碰撞且在相遇时遵守避碰准则采取避碰策略,同时避免出现大角度转向、紧急加减速的情况。本发明致力找到严格遵守避碰准则的多USV避碰规划方法,并且解决航行过程的大角度转向、大范围加减速的不良航行问题。实现路径最短、符合经济性、平滑性、安全性的最优避碰。

    一种机器人基于改进蚁群优化的线特征数据关联方法

    公开(公告)号:CN110119705B

    公开(公告)日:2023-04-18

    申请号:CN201910384163.7

    申请日:2019-05-09

    Abstract: 本发明属于数据关联领域,具体涉及一种机器人基于改进蚁群优化的线特征数据关联方法。包括以下步骤:构建全局坐标系和局部坐标系,设置传感器工作模式;建立线特征观测模型;采用改进分割‑聚合方法提取环境线特征;设计改进ICNN方法与改进蚁群优化方法相结合的线特征数据关联方法;将传感器获得的环境线特征信息以及移动机器人位姿信息输入至基于改进蚁群优化的线特征数据关联方法中,进行数据关联,得到一个关联对集合,对地图特征集进行更新。首先基于激光传感器数据提取环境线特征,再将改进ICNN算法与改进蚁群优化算法相结合,提高了数据关联算法的关联正确率,得到精确的环境地图。

    改进型编码解码结构的全卷积神经网络语义分割方法

    公开(公告)号:CN110717921B

    公开(公告)日:2022-11-15

    申请号:CN201910914737.7

    申请日:2019-09-26

    Abstract: 本发明属于深度学习及机器视觉领域,具体涉及一种改进型编码解码结构的全卷积神经网络语义分割方法。本发明采用图像预处理操作不仅提高了模型的精度,而且也增强了模型的稳定性;针对池化和下采样的重复组合的操作引起特征分辨率下降的问题,采用全卷积神经网络,进而提高了语义分割的准确性;引用U‑net模型结构的思想,采用编码‑解码结构,保留了二倍和四倍下采样的特征信息,分别与四倍和二倍上采样特征信息进行融合,通过逐渐恢复空间信息来捕捉清晰的目标边界,解决了图像边缘分割不太准确的问题,同时提高了神经网络的收敛速度,节约了运行时间。

    一种基于避碰准则的多USV群体协同避碰规划方法

    公开(公告)号:CN109597417B

    公开(公告)日:2022-04-05

    申请号:CN201910033309.3

    申请日:2019-01-14

    Abstract: 本发明属于USV控制技术领域,具体涉及一种基于避碰准则的多USV群体协同避碰规划方法。该方法包括:步骤1、制定合理的USV避碰规则;步骤2、多USV系统建模,计算运动参数和碰撞危险度;步骤3、构建USV避碰规划仿真软件平台,添加雷达探测模块和遗传算法,设计典型的仿真案例验证算法的有效性。本发明使多个USV从起点出发躲避环境中所有静态障碍物到达终点,在整个航行过程中USV之间不发生碰撞且在相遇时遵守避碰准则采取避碰策略,同时避免出现大角度转向、紧急加减速的情况。本发明致力找到严格遵守避碰准则的多USV避碰规划方法,并且解决航行过程的大角度转向、大范围加减速的不良航行问题。实现路径最短、符合经济性、平滑性、安全性的最优避碰。

Patent Agency Ranking