一种基于图卷积神经网络的人脸聚类方法

    公开(公告)号:CN114511905B

    公开(公告)日:2024-11-05

    申请号:CN202210066025.6

    申请日:2022-01-20

    Abstract: 本发明属于人脸聚类技术领域,具体涉及一种基于图卷积神经网络的人脸聚类方法。本发明首先对人脸数据做特征提取,把人脸特征看成节点,计算所有节点的局部密度值;然后,基于局部密度值将数据划分为高密度节点和低密度节点两部分,高密度节点连接最近邻中同为高密度的节点,形成多个聚类中心;为低密度节点构造自适应子图,作为图卷积神经网络的输入,预测节点间的连通性;最后,将两部分合并后使用伪标签传播将不符合要求的边切除,获取最终的聚类结果。本发明基于密度将数据划分为两部分,仅对低密度部分构建子图进行推理,提高了聚类的效率,同时自适应子图能够提取更为丰富的上下文信息,使得对子图的推理更为准确,提高了聚类的准确度。

    一种基于图卷积神经网络的人脸聚类方法

    公开(公告)号:CN114511905A

    公开(公告)日:2022-05-17

    申请号:CN202210066025.6

    申请日:2022-01-20

    Abstract: 本发明属于人脸聚类技术领域,具体涉及一种基于图卷积神经网络的人脸聚类方法。本发明首先对人脸数据做特征提取,把人脸特征看成节点,计算所有节点的局部密度值;然后,基于局部密度值将数据划分为高密度节点和低密度节点两部分,高密度节点连接最近邻中同为高密度的节点,形成多个聚类中心;为低密度节点构造自适应子图,作为图卷积神经网络的输入,预测节点间的连通性;最后,将两部分合并后使用伪标签传播将不符合要求的边切除,获取最终的聚类结果。本发明基于密度将数据划分为两部分,仅对低密度部分构建子图进行推理,提高了聚类的效率,同时自适应子图能够提取更为丰富的上下文信息,使得对子图的推理更为准确,提高了聚类的准确度。

Patent Agency Ranking