-
公开(公告)号:CN111065048A
公开(公告)日:2020-04-24
申请号:CN201911265585.9
申请日:2019-12-11
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于量子风驱动机制的多无人机TDOA三维协同定位方法,建立多无人机TDOA三维协同定位估计模型;初始化量子空气质点集合,同时确定三维空间搜索区域,减小搜索范围进而减少计算复杂度;计算每个量子空气质点的适应度值,确定全局最优适应度值和全局最优量子位置,并根据适应度值的大小降序排列量子空气质点集合的量子位置及相应速度;更新每个量子空气质点的速度;更新每个量子空气质点的量子位置;对每个量子空气质点更新后的量子位置计算其适应度值;判断t+1是否达到最大迭代次数Gmax,若达到最大迭代次数,则终止迭代;否则,令t=t+1继续;执行完毕,得到目标估计值。本发明收敛速度快、三维定位精度高和适应性强。
-
公开(公告)号:CN111065048B
公开(公告)日:2021-01-12
申请号:CN201911265585.9
申请日:2019-12-11
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于量子风驱动机制的多无人机TDOA三维协同定位方法,建立多无人机TDOA三维协同定位估计模型;初始化量子空气质点集合,同时确定三维空间搜索区域,减小搜索范围进而减少计算复杂度;计算每个量子空气质点的适应度值,确定全局最优适应度值和全局最优量子位置,并根据适应度值的大小降序排列量子空气质点集合的量子位置及相应速度;更新每个量子空气质点的速度;更新每个量子空气质点的量子位置;对每个量子空气质点更新后的量子位置计算其适应度值;判断t+1是否达到最大迭代次数Gmax,若达到最大迭代次数,则终止迭代;否则,令t=t+1继续;执行完毕,得到目标估计值。本发明收敛速度快、三维定位精度高和适应性强。
-