一种面向特定领域开放网络问句的文本分类方法

    公开(公告)号:CN111046179B

    公开(公告)日:2022-07-15

    申请号:CN201911222868.5

    申请日:2019-12-03

    Abstract: 本发明属于文本分类处理技术领域,具体涉及一种面向特定领域开放网络问句的文本分类方法。本发明克服了在执行一些特定领域的网络开放文本分类任务的情况下,缺乏足够可用的带类别标记的语料集,且网络文本信息量低、噪音大的问题,并为该领域的开放网络问句的层次分类提供了新方法。本发明利用了特定领域的开放网络问句及书面文本使领域的词嵌入表示更符合领域知识特征,同时,使用半监督方法加速分类模型训练并减少所需的标记样本。此外,还结合了条件概率实现了在多粒度层级的类别划分。本发明可以在问答系统、情感分析、领域知识库等领域辅助数据的提取、判别和构建。

    一种文本语料库的关系抽取方法

    公开(公告)号:CN112836062B

    公开(公告)日:2022-05-13

    申请号:CN202110039879.0

    申请日:2021-01-13

    Abstract: 本发明属于关系抽取技术领域,具体涉及一种文本语料库的关系抽取方法。本发明解决了传统关系分类模型不能很好的利用句子中重要的信息对关系进行建模,并且一些神经网络模型往往需要使用NLP工具来提取额外的特征的问题,提出了基于注意力机制的分段循环神经网络。本发明所提出模型可以突出考虑句子中的关键部分,而且能够利用句子的其他部分对关键部分进行补充,然后利用潜在关系向量和注意力机制得到句子的关系表示向量,在这个过程中不需要任何手工设计的特征或者NLP工具。本发明通过依存句法分析发现关系类型,并提出了一种用来构建训练语料的弱监督方法。实验结果显示提出的关系抽取模型在弱监督获取的训练数据集上达到了较高的性能。

    一种面向特定领域开放网络问句的文本分类方法

    公开(公告)号:CN111046179A

    公开(公告)日:2020-04-21

    申请号:CN201911222868.5

    申请日:2019-12-03

    Abstract: 本发明属于文本分类处理技术领域,具体涉及一种面向特定领域开放网络问句的文本分类方法。本发明克服了在执行一些特定领域的网络开放文本分类任务的情况下,缺乏足够可用的带类别标记的语料集,且网络文本信息量低、噪音大的问题,并为该领域的开放网络问句的层次分类提供了新方法。本发明利用了特定领域的开放网络问句及书面文本使领域的词嵌入表示更符合领域知识特征,同时,使用半监督方法加速分类模型训练并减少所需的标记样本。此外,还结合了条件概率实现了在多粒度层级的类别划分。本发明可以在问答系统、情感分析、领域知识库等领域辅助数据的提取、判别和构建。

    一种文本语料库的关系抽取方法

    公开(公告)号:CN112836062A

    公开(公告)日:2021-05-25

    申请号:CN202110039879.0

    申请日:2021-01-13

    Abstract: 本发明属于关系抽取技术领域,具体涉及一种文本语料库的关系抽取方法。本发明解决了传统关系分类模型不能很好的利用句子中重要的信息对关系进行建模,并且一些神经网络模型往往需要使用NLP工具来提取额外的特征的问题,提出了基于注意力机制的分段循环神经网络。本发明所提出模型可以突出考虑句子中的关键部分,而且能够利用句子的其他部分对关键部分进行补充,然后利用潜在关系向量和注意力机制得到句子的关系表示向量,在这个过程中不需要任何手工设计的特征或者NLP工具。本发明通过依存句法分析发现关系类型,并提出了一种用来构建训练语料的弱监督方法。实验结果显示提出的关系抽取模型在弱监督获取的训练数据集上达到了较高的性能。

Patent Agency Ranking