一种文本情绪预测方法及装置

    公开(公告)号:CN104573030B

    公开(公告)日:2017-12-12

    申请号:CN201510018521.4

    申请日:2015-01-14

    Abstract: 本申请提供的文本情绪预测方法及装置,构建情绪匹配知识库,将待分类文本与情绪匹配知识库进行匹配,得到待分类文本的情绪特征,将所述待分类文本的情绪特征进行分类,得到文本的情绪分类结果。在人工构建具有动作与对象标注的情绪匹配知识库的基础上,将待分类文本自动学习进行分类,提高读者情绪预测的准确性和效率,满足大规模文本语料处理的需求。

    一种文本情绪预测方法及装置

    公开(公告)号:CN104573030A

    公开(公告)日:2015-04-29

    申请号:CN201510018521.4

    申请日:2015-01-14

    Abstract: 本申请提供的文本情绪预测方法及装置,构建情绪匹配知识库,将待分类文本与情绪匹配知识库进行匹配,得到待分类文本的情绪特征,将所述待分类文本的情绪特征进行分类,得到文本的情绪分类结果。在人工构建具有动作与对象标注的情绪匹配知识库的基础上,将待分类文本自动学习进行分类,提高读者情绪预测的准确性和效率,满足大规模文本语料处理的需求。

    文本情感分析的方法及装置

    公开(公告)号:CN106528528A

    公开(公告)日:2017-03-22

    申请号:CN201610907156.7

    申请日:2016-10-18

    CPC classification number: G06F17/271 G06F16/35 G06F17/2785

    Abstract: 本发明涉及自然语言处理技术领域,提供了一种文本情感分析的方法及装置。所述文本情感分析的方法包括以下步骤:获取原始语料,使用带有条件随机场的双向LSTM神经网络对所述原始语料的语句中的情感表达目标进行分析和识别;统计识别出的所述情感表达目标的数量,并根据所述情感表达目标的数量将所述语句判断为无情感表达目标的语句、带有一个情感表达目标的语句或带有多个情感表达目标的语句;将所述原始语料中的无情感表达目标的语句、带有一个情感表达目标的语句和/或带有多个情感表达目标的语句分别输入到三个一维卷积神经网络中进行情感分类,得到情感分类结果。本发明提高了文本情感分类的效率、准确性和容错性,能满足大规模语料处理的需求。

Patent Agency Ranking