基于图形处理单元的自组织映射神经网络聚类方法及系统

    公开(公告)号:CN103488662A

    公开(公告)日:2014-01-01

    申请号:CN201310112420.4

    申请日:2013-04-01

    CPC classification number: G06F17/30864 G06N3/08

    Abstract: 本发明涉及一种基于图形处理单元的并行化自组织映射神经网络的聚类方法及系统,相对传统的串行化聚类方法,本发明通过算法的并行化和基于图形处理单元的并行加速系统,能更快的实现大规模数据的聚类。本发明主要涉及两方面的内容:(1)首先,针对图形处理单元的高并行计算能力的特点,设计了一种并行化自组织映射神经网络的聚类方法,该方法通过并行化统计文档的关键词词频得到词频矩阵,通过并行化计算文本的特征向量生成数据集的特征矩阵,通过并行化的自组织映射神经网络聚类得到海量数据对象的簇结构;(2)其次,利用图形处理单元(GPU)和中央处理器(CPU)之间的计算能力的互补性,设计了一套基于CPU/GPU协作框架的并行化文本聚类系统。

Patent Agency Ranking