-
公开(公告)号:CN118428494A
公开(公告)日:2024-08-02
申请号:CN202410581945.0
申请日:2024-05-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N20/20
Abstract: 本发明涉及模型训练技术领域,具体是涉及一种样本权重构建方法、模型更新方法、双层系统、设备。本发明在边缘服务器将样本信息发送给中心服务器之后,边缘服务器会实时监测其上的远端模型的更新总次数,根据更新总次数确定样本信息的实时新鲜度,并根据样本信息中的控制结果确定样本信息的误差权重。根据更新总次数和控制结果确定样本信息的总权重,使得使用样本信息进行本地模型训练时,本地模型能够根据总权重有侧重的学习样本信息,从而提高了所训练的本地模型性能,使用高性能的本地模型更新远端模型,进而也能提高远端模型的性能。