-
公开(公告)号:CN117830031B
公开(公告)日:2024-06-14
申请号:CN202410247586.5
申请日:2024-03-05
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06Q50/06 , G06F18/10 , G06F18/213 , G06F18/25 , G06F123/02 , G06N3/0442 , G06N3/045 , G06N3/049 , G06Q50/26
Abstract: 本发明公开了一种供水管网末梢水质浊度预测方法及相关设备,所述方法包括:获取城市供水管网监测网络采集的历史数据集,分析不同时延下所述第一监测数据与所述第二监测数据之间的时序相关性,得到每个所述内部监测点位的水况波动对每个所述末梢监测点位的水质浊度的影响持续时间;建立LSTM神经网络进行时序特征提取,并用深度神经网络网络进行特征融合,建立浊度预测模型;获取内部监测点位的目标监测数据,将目标监测数据输入到所述供水管网末梢水质浊度预测模型中进行预测,得到供水管网末梢监测点位的目标水质浊度。本发明有效提高了供水管网末梢水质的评估精度,可准确预测城市供水管网末梢水质浊度变化,对保障饮用水质量安全具有重要意义。
-
公开(公告)号:CN117830031A
公开(公告)日:2024-04-05
申请号:CN202410247586.5
申请日:2024-03-05
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06Q50/06 , G06F18/10 , G06F18/213 , G06F18/25 , G06F123/02 , G06N3/0442 , G06N3/045 , G06N3/049 , G06Q50/26
Abstract: 本发明公开了一种供水管网末梢水质浊度预测方法及相关设备,所述方法包括:获取城市供水管网监测网络采集的历史数据集,分析不同时延下所述第一监测数据与所述第二监测数据之间的时序相关性,得到每个所述内部监测点位的水况波动对每个所述末梢监测点位的水质浊度的影响持续时间;建立LSTM神经网络进行时序特征提取,并用深度神经网络网络进行特征融合,建立浊度预测模型;获取内部监测点位的目标监测数据,将目标监测数据输入到所述供水管网末梢水质浊度预测模型中进行预测,得到供水管网末梢监测点位的目标水质浊度。本发明有效提高了供水管网末梢水质的评估精度,可准确预测城市供水管网末梢水质浊度变化,对保障饮用水质量安全具有重要意义。
-