-
公开(公告)号:CN117676601B
公开(公告)日:2024-09-03
申请号:CN202311678788.7
申请日:2023-12-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04W16/18 , H04B7/0413 , H04B7/145 , G06N3/006
Abstract: 本发明公开了一种面向窃听环境下去蜂窝大规模MIMO系统的AIRS部署方法,方法首先提出了最大的用户处符号错误概率最小化优化问题,约束条件包括绝对安全限制约束、AIRS的位置范围和角度范围,通过块坐标下降算法将原始优化问题解耦为两个子优化问题:AIRS位置部署子问题和AIRS角度部署子问题,针对AIRS位置部署优化,使用逐次凸逼近算法将非凸子问题转化为凸问题,然后用凸优化求解器求解;针对AIRS的角度部署,提出了一种改进的粒子群优化方法解决。相比传统的粒子群方法,本发明提出的改进粒子群优化方法可以避免陷入角度优化的局部最优解,在符号错误概率性能上更优,还能实现可靠性和安全性的更好折中。
-
公开(公告)号:CN117676601A
公开(公告)日:2024-03-08
申请号:CN202311678788.7
申请日:2023-12-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04W16/18 , H04B7/0413 , H04B7/145 , G06N3/006
Abstract: 本发明公开了一种面向窃听环境下去蜂窝大规模MIMO系统的AIRS部署方法,方法首先提出了最大的用户处符号错误概率最小化优化问题,约束条件包括绝对安全限制约束、AIRS的位置范围和角度范围,通过块坐标下降算法将原始优化问题解耦为两个子优化问题:AIRS位置部署子问题和AIRS角度部署子问题,针对AIRS位置部署优化,使用逐次凸逼近算法将非凸子问题转化为凸问题,然后用凸优化求解器求解;针对AIRS的角度部署,提出了一种改进的粒子群优化方法解决。相比传统的粒子群方法,本发明提出的改进粒子群优化方法可以避免陷入角度优化的局部最优解,在符号错误概率性能上更优,还能实现可靠性和安全性的更好折中。
-