-
公开(公告)号:CN109711354A
公开(公告)日:2019-05-03
申请号:CN201811626841.8
申请日:2018-12-28
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明公开了一种基于视频属性表示学习的目标跟踪方法,包括以下步骤:构建具有多属性分支的深度卷积神经网络模型;将训练数据按照视频属性进行分组;在训练数据中选取目标样本和背景样本;按照两阶段训练策略训练深度卷积神经网络模型;使用训练后的深度卷积神经网络模型对目标进行跟踪。使用不同分支学习不同属性下的表示降低了每个分支的学习难度,使得每个分支所需求的训练数据数量也降低。这些表示被自适应地融合后用于分类,提高了特征表示的判别力,使得本提案的方法可以应对复杂的跟踪场景。两阶段训练策略保证了多视频属性分支卷积神经网络可以达到预期目的。