-
公开(公告)号:CN115457551A
公开(公告)日:2022-12-09
申请号:CN202210918858.0
申请日:2022-07-31
Applicant: 哈尔滨工业大学(威海)
IPC: G06V20/70 , G06V10/82 , G06V10/25 , G06V10/26 , G06V10/52 , G06V10/764 , G06V10/774 , G06V10/80 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种适用于小样本条件的叶片损伤识别方法,提出了基于Mask R‑CNN的分层混合检测网络结构组成、损失函数分析、训练以及预测流程。针对尺寸较小、出现频率较低、容易被忽略的对象(即损伤),采取低IoU阈值分类与高IoU阈值目标分割训练,低置信度分类与高置信度目标分割混合识别策略,以获得更全面的检测结果。采取通过图像处理办法扩充样本数据集、输入端数据增强、引用COCO预训练权重、迁移学习等方法提高了损伤图像小样本训练的收敛速度和准确度。