-
公开(公告)号:CN114355897B
公开(公告)日:2023-08-29
申请号:CN202111536096.X
申请日:2021-12-15
Applicant: 同济大学
IPC: G05D1/02
Abstract: 本发明涉及一种基于模型和强化学习混合切换的车辆路径跟踪控制方法,包括以下步骤:根据规划层给出的轨迹和车辆运动学模型,使用模型预测控制算法得到控制策略一(控制策略包括对油门、刹车和方向盘的控制);同时根据规划层给出的轨迹,使用深度强化学习中的演员网络得到控制策略二;根据当前的车辆状态和环境状态信息,使用深度强化学习中的评论家网络对两种控制策略进行评估,并选择能够获得更高价值的控制策略进行实际的输出,实现车辆的路径跟踪控制。与现有技术相比,本发明将基于模型的经典方法和基于学习的新兴方法融合,具有灵活性强、稳健性好、控制性能更优等特点。
-
公开(公告)号:CN114355897A
公开(公告)日:2022-04-15
申请号:CN202111536096.X
申请日:2021-12-15
Applicant: 同济大学
IPC: G05D1/02
Abstract: 本发明涉及一种基于模型和强化学习混合切换的车辆路径跟踪控制方法,包括以下步骤:根据规划层给出的轨迹和车辆运动学模型,使用模型预测控制算法得到控制策略一(控制策略包括对油门、刹车和方向盘的控制);同时根据规划层给出的轨迹,使用深度强化学习中的演员网络得到控制策略二;根据当前的车辆状态和环境状态信息,使用深度强化学习中的评论家网络对两种控制策略进行评估,并选择能够获得更高价值的控制策略进行实际的输出,实现车辆的路径跟踪控制。与现有技术相比,本发明将基于模型的经典方法和基于学习的新兴方法融合,具有灵活性强、稳健性好、控制性能更优等特点。
-