-
公开(公告)号:CN110014426B
公开(公告)日:2020-10-02
申请号:CN201910218554.1
申请日:2019-03-21
Applicant: 同济大学
IPC: B25J9/16
Abstract: 本发明涉及一种利用低精度深度相机高精度抓取形状对称工件的方法,包括以下步骤:1)在抓取坐标系O‑XYZ中对生产线抓取区运送工件料盘进行位置测定;2)对机械臂抓取系统进行手眼标定,得到相机坐标系与抓取坐标系之间的齐次坐标转换矩阵T1;3)生成3D工件模型点云并标记抓取位置;4)构建基于深度学习的工件检测网络模型并进行训练;5)根据训练后的工件检测网络模型进行2D图像目标检测;6)集成图像目标检测结果和料盘位置信息,从3D抓取区观测点云中分割得到工件观测点云;7)根据分割得到的工件观测点云估计抓取位姿。与现有技术相比,本发明能够利用低精度深度相机进行视觉引导达到高精度深度相机视觉引导的抓取精度。
-
公开(公告)号:CN110014426A
公开(公告)日:2019-07-16
申请号:CN201910218554.1
申请日:2019-03-21
Applicant: 同济大学
IPC: B25J9/16
Abstract: 本发明涉及一种利用低精度深度相机高精度抓取形状对称工件的方法,包括以下步骤:1)在抓取坐标系O-XYZ中对生产线抓取区运送工件料盘进行位置测定;2)对机械臂抓取系统进行手眼标定,得到相机坐标系与抓取坐标系之间的齐次坐标转换矩阵T1;3)生成3D工件模型点云并标记抓取位置;4)构建基于深度学习的工件检测网络模型并进行训练;5)根据训练后的工件检测网络模型进行2D图像目标检测;6)集成图像目标检测结果和料盘位置信息,从3D抓取区观测点云中分割得到工件观测点云;7)根据分割得到的工件观测点云估计抓取位姿。与现有技术相比,本发明能够利用低精度深度相机进行视觉引导达到高精度深度相机视觉引导的抓取精度。
-