-
公开(公告)号:CN119885132A
公开(公告)日:2025-04-25
申请号:CN202411969892.6
申请日:2024-12-30
Applicant: 同济大学
IPC: G06F21/31 , G06N3/042 , G06N3/0464 , G06N3/088 , G06F18/23213
Abstract: 本发明涉及一种基于因果解纠缠的无监督异常身份识别方法,该方法包括:S1、采用图神经网络对身份输入数据进行特征编码;S2、采用GraphSAGE算法对节点进行特征嵌入计算得到节点的嵌入特征Z,采用图卷积神经网络对嵌入特征Z进一步处理得到特征分解掩码mask,根据节点的嵌入表示Z和特征分解掩码mask计算节点的因果特征Zc和环境特征Zs;S3、基于因果特征Zc和环境特征Zs,使用对比学习算法进行无监督特征学习,得到因果解纠缠模型;S4、采用因果解纠缠模型提取出节点的因果特征表示,采用聚类算法对节点的因果特征表示进行聚类,自动识别出潜在的异常节点。与现有技术相比,本发明具有准确高以及可靠高等优点。