一种利用纳米粒子溶液旋涂制备钒酸铋光电阳极的方法

    公开(公告)号:CN111302650B

    公开(公告)日:2021-07-09

    申请号:CN202010187162.6

    申请日:2020-03-17

    Applicant: 吉林大学

    Abstract: 本发明提供了一种利用纳米粒子溶液旋涂制备钒酸铋光电阳极的方法,涉及钒酸铋光电阳极制备技术领域。本发明将硝酸铋与油酸、油胺和非极性溶剂混合,在氮气气氛和170~175℃条件下反应,得到油酸铋和油胺铋的混合溶液;将油酸铋和油胺铋的混合溶液冷却至130~140℃,与偏钒酸铵和仲钼酸铵的混合水溶液混合,在90~100℃条件下反应,得到钼掺杂钒酸铋纳米粒子;将钼掺杂钒酸铋纳米粒子溶于氯苯,得到的钼掺杂钒酸铋纳米粒子溶液旋涂在FTO导电玻璃表面,干燥后进行退火处理,得到钒酸铋光电阳极。由本发明方法制备的钒酸铋光电阳极具有低的反射率和高的透过率,且钒酸铋纯度高,所得钒酸铋光电阳极光催化性能优异。

    一种“两相法”制备形貌可控的BiVO4纳米晶的方法

    公开(公告)号:CN108892170A

    公开(公告)日:2018-11-27

    申请号:CN201810882109.0

    申请日:2018-08-06

    Applicant: 吉林大学

    Abstract: 一种“两相法”制备形貌可控的BiVO4纳米晶的方法,属于半导体光催化材料制备技术领域。该方法将铋的前驱体和钒的前驱体分别溶解在有机相和水相中,通过胶体“两相法”制备不同形貌的BiVO4纳米晶,包括球形纳米粒子、纳米棒、纳米片、纳米盘等。该方法具有耗时短、反应温度低、条件温和等优点,整个实验过程操作简便,具有很好的实验重复性,并且有效的降低了制备成本,很适合于纳米晶的工业化生产。其中超薄的BiVO4纳米片展现出了最优异的光催化水氧化的性能,在相同的测试条件下,其产氧的速率是其他传统方法(水热法或共沉淀法)制备的BiVO4样品的三倍以上。对于未来太阳能分解水制氢产业化有着重要的借鉴意义。

    一种利用纳米粒子溶液旋涂制备钒酸铋光电阳极的方法

    公开(公告)号:CN111302650A

    公开(公告)日:2020-06-19

    申请号:CN202010187162.6

    申请日:2020-03-17

    Applicant: 吉林大学

    Abstract: 本发明提供了一种利用纳米粒子溶液旋涂制备钒酸铋光电阳极的方法,涉及钒酸铋光电阳极制备技术领域。本发明将硝酸铋与油酸、油胺和非极性溶剂混合,在氮气气氛和170~175℃条件下反应,得到油酸铋和油胺铋的混合溶液;将油酸铋和油胺铋的混合溶液冷却至130~140℃,与偏钒酸铵和仲钼酸铵的混合水溶液混合,在90~100℃条件下反应,得到钼掺杂钒酸铋纳米粒子;将钼掺杂钒酸铋纳米粒子溶于氯苯,得到的钼掺杂钒酸铋纳米粒子溶液旋涂在FTO导电玻璃表面,干燥后进行退火处理,得到钒酸铋光电阳极。由本发明方法制备的钒酸铋光电阳极具有低的反射率和高的透过率,且钒酸铋纯度高,所得钒酸铋光电阳极光催化性能优异。

    一种“两相法”制备形貌可控的BiVO4纳米晶的方法

    公开(公告)号:CN108892170B

    公开(公告)日:2020-06-16

    申请号:CN201810882109.0

    申请日:2018-08-06

    Applicant: 吉林大学

    Abstract: 一种“两相法”制备形貌可控的BiVO4纳米晶的方法,属于半导体光催化材料制备技术领域。该方法将铋的前驱体和钒的前驱体分别溶解在有机相和水相中,通过胶体“两相法”制备不同形貌的BiVO4纳米晶,包括球形纳米粒子、纳米棒、纳米片、纳米盘等。该方法具有耗时短、反应温度低、条件温和等优点,整个实验过程操作简便,具有很好的实验重复性,并且有效的降低了制备成本,很适合于纳米晶的工业化生产。其中超薄的BiVO4纳米片展现出了最优异的光催化水氧化的性能,在相同的测试条件下,其产氧的速率是其他传统方法(水热法或共沉淀法)制备的BiVO4样品的三倍以上。对于未来太阳能分解水制氢产业化有着重要的借鉴意义。

Patent Agency Ranking