-
公开(公告)号:CN116912253B
公开(公告)日:2023-12-05
申请号:CN202311181020.9
申请日:2023-09-14
Applicant: 吉林大学
Abstract: 基于多尺度混合神经网络的肺癌病理图像分类方法,解决现有方法无法充分提取病理图像中的特征、模型复杂度高、计算量大以及消耗的存储资源大等问题,本发明方法中的基于多尺度混合神经网络的深度学习模型,用于肺癌病理图像自动检测。该方法采用多尺度输入方式,混合神经网络结合了MLP‑Mixer和Swin Transformer两种简单高效的模型,以充分提取补丁之间的语义信息和每个补丁内部的语义信息,同时有效控制计算复杂度和计算量。使用多层感知器模块对局部和全局特征进行融合,并进行分类。本发明实现了96.55%的准确率。实验结果表明,该框架展现出了在肺癌病理图像分类领域的有效性和
-
公开(公告)号:CN116912253A
公开(公告)日:2023-10-20
申请号:CN202311181020.9
申请日:2023-09-14
Applicant: 吉林大学
Abstract: 基于多尺度混合神经网络的肺癌病理图像分类方法,解决现有方法无法充分提取病理图像中的特征、模型复杂度高、计算量大以及消耗的存储资源大等问题,本发明方法中的基于多尺度混合神经网络的深度学习模型,用于肺癌病理图像自动检测。该方法采用多尺度输入方式,混合神经网络结合了MLP‑Mixer和Swin Transformer两种简单高效的模型,以充分提取补丁之间的语义信息和每个补丁内部的语义信息,同时有效控制计算复杂度和计算量。使用多层感知器模块对局部和全局特征进行融合,并进行分类。本发明实现了96.55%的准确率。实验结果表明,该框架展现出了在肺癌病理图像分类领域的有效性和潜力。
-
公开(公告)号:CN116030306A
公开(公告)日:2023-04-28
申请号:CN202310082953.6
申请日:2023-02-08
Applicant: 吉林大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/40 , G06V10/32 , G16H70/60 , G16H30/00 , G06N3/0464 , G06N3/08
Abstract: 基于多层感知机的肺部组织病理图像类型辅助分类方法,涉及病理数据图像处理技术领域,解决现有的卷积神经网络、VisionTransformer中的卷积操作和自注意力机制过于复杂,算法的训练时间较长导致分类方法复杂等问题,本发明通过获得混合数据集,建立多层感知机模型以及对模型进行性能评估等步骤实现病理图像类型的辅助分类。本发明中的多层感知机模型不使用任何复杂的卷积操作和自注意力机制,模型结构简单,计算量小,处理速度快。设计了双数据流输入方式,使模型在可以捕捉全局信息的基础上还可以捕捉到局部信息,充分提取图像中的语义信息,提高模型对肺部组织病理图像的分类性能。
-
-