-
公开(公告)号:CN115880574B
公开(公告)日:2023-06-16
申请号:CN202310188520.9
申请日:2023-03-02
Applicant: 吉林大学
IPC: G06V20/05 , G06V10/25 , G06V10/774 , G06V10/82 , G06N3/0464
Abstract: 本发明具体涉及一种水下光学图像轻量化目标识别方法、设备和介质,其特征在于,所述方法包括如下步骤:S1、收集水下光学图像数据集,将数据集分为训练集和测试集,并对训练集进行标注;S2、对训练集进行特征提取,捕捉场景中角色的时空信息和交互信息,并输出相应特征图;S3、构建训练网络对步骤S2中的特征图进行训练,所述训练网络中,针对学习率采用一致衰减策略,针对网络结构采用交错分组策略,针对训练方法采用多尺度聚合模块与短/长聚合模块相结合;S4、将经过充分训练的训练集参数加载到训练网络中,将测试集图像输入,测试获得最终结果。提高水下光学图像目标识别的计算速度和存储能力,有利于性能的提升和资源的配置。
-
公开(公告)号:CN115880574A
公开(公告)日:2023-03-31
申请号:CN202310188520.9
申请日:2023-03-02
Applicant: 吉林大学
IPC: G06V20/05 , G06V10/25 , G06V10/774 , G06V10/82 , G06N3/0464
Abstract: 本发明具体涉及一种水下光学图像轻量化目标识别方法、设备和介质,其特征在于,所述方法包括如下步骤:S1、收集水下光学图像数据集,将数据集分为训练集和测试集,并对训练集进行标注;S2、对训练集进行特征提取,捕捉场景中角色的时空信息和交互信息,并输出相应特征图;S3、构建训练网络对步骤S2中的特征图进行训练,所述训练网络中,针对学习率采用一致衰减策略,针对网络结构采用交错分组策略,针对训练方法采用多尺度聚合模块与短/长聚合模块相结合;S4、将经过充分训练的训练集参数加载到训练网络中,将测试集图像输入,测试获得最终结果。提高水下光学图像目标识别的计算速度和存储能力,有利于性能的提升和资源的配置。
-