-
公开(公告)号:CN116434143A
公开(公告)日:2023-07-14
申请号:CN202310406803.6
申请日:2023-04-17
Applicant: 厦门理工学院
Abstract: 本发明涉及一种基于特征重构的跨模态行人重识别方法,包括以下步骤:1)从数据集中成对抽取多个行人的可见光图片和红外图片,形成可见光训练数据集和红外训练数据集;2)构建基于特征重构的跨模态行人重识别网络模型,所述跨模态行人重识别网络模型主要包括特定特征提取模块、多尺度特征提取模块、Token感知的多尺度特征融合模块和跨模态特征重构模块;通过可见光训练数据集和红外训练数据集对跨模态行人重识别网络模型进行训练,得到可泛化的模型参数;3)将训练好的跨模态行人重识别网络模型用于跨模态检索,实现跨模态行人重识别。该方法及系统有利于获得更加稳定、鲁棒、准确的跨模态行人重识别结果。
-
公开(公告)号:CN117218603A
公开(公告)日:2023-12-12
申请号:CN202311366734.7
申请日:2023-10-20
Applicant: 厦门理工学院
IPC: G06V20/52 , G06V10/40 , G06V10/774 , G06V10/82 , G06V10/764 , G06F17/16
Abstract: 本发明涉及一种基于高阶结构建模的跨模态行人重识别方法及系统,该方法包括:1)从数据集中成对抽取多个行人的VIS图片和IR图片,形成VIS‑IR图片对训练数据集;2)构建跨模态行人重识别网络模型,跨模态行人重识别网络模型主要包括用于提取图像基本特征的骨干网络、用于提取不同范围尺度特征的短长范围特征提取模块、用于学习图像中高阶结构信息的高阶结构学习模块和用于减少行人在不同模态下差异的共享空间学习模块;通过训练数据集对模型进行训练,得到可泛化的模型参数;3)将训练好的跨模态行人重识别网络模型用于跨模态检索,实现不同模态之间的行人重识别。该方法及系统有利于获得更加稳定、鲁棒、准确的跨模态行人重识别结果。
-