-
公开(公告)号:CN115331260A
公开(公告)日:2022-11-11
申请号:CN202210994031.8
申请日:2022-08-18
Applicant: 厦门理工学院
Abstract: 本发明涉及一种基于全局‑局部图卷积网络的跨域行人重识别方法及系统,该方法包括以下步骤:利用特征提取器提取源域和目标域图像的全局特征;将全局特征进行水平切分得到上半身特征和下半身特征,并使用仿射变换映射得到细粒度更高的局部特征;使用DBSCAN聚类方法对不带有标签的目标域图像生成伪标签,再利用自步学习的策略生成可靠标签;使用图卷积网络将同一张图像的全局特征、上半身特征、下半身特征及细粒度更高的局部特征进行特征融合;将全局特征、细粒度更高的局部特征分别存储于全局特征存储库、局部特征存储库;使用对比学习损失函数训练网络模型,并利用训练好的网络模型对图像进行重识别。该方法及系统有利于提高跨域行人重识别的准确性。