-
公开(公告)号:CN118378621B
公开(公告)日:2024-11-22
申请号:CN202410808562.2
申请日:2024-06-21
Applicant: 厦门理工学院
IPC: G06F40/279 , G06F40/30 , G06F40/284 , G06N3/045 , G06N3/0475 , G06N3/08
Abstract: 本发明提出一种基于多样特征生成的零样本汉字识别方法,解析汉字的部首组成获取表意描述序列;对表意描述序列进行混合语义嵌入获得多语义向量;对已见类汉字图像进行特征提取获取真实特征;构建特征生成网络学习多语义向量到真实特征的映射;通过已见类训练集进行训练后通过多种未见类语义向量生成未见类特征;利用未见类特征结合已见类训练集的特征共同训练识别模型使其具备识别已见类和未见类汉字能力。本发明通过混合语义嵌入提供多种语义来生成训练样本,有助于缓解合成特征的域迁移问题和特征混淆问题,提高特征生成的泛化能力和鲁棒性;通过为识别模型提供高质量的未见类特征,缓解零样本汉字识别的偏倚问题,提高了未见汉字的识别能力。
-
公开(公告)号:CN119625760A
公开(公告)日:2025-03-14
申请号:CN202411694627.1
申请日:2024-11-25
Applicant: 厦门理工学院
IPC: G06V30/226 , G06V30/186 , G06V30/262 , G06V30/19 , G06V10/766 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/0499 , G06N3/0985 , G06N3/048
Abstract: 本发明提出一种基于部首表示学习的零样本汉字识别方法,包括以下步骤:建立零样本汉字识别数据集,获取汉字的表意描述序列;根据表意描述序列获取所有汉字的语义嵌入向量和所有部首及结构嵌入向量;汉字图像经过ResNet提取图像特征向量;图像特征向量经过特征增强编码模块得到增强特征;部首表示解码模块在部首及结构嵌入向量的引导下将增强特征转化为部首表示特征;汉字匹配模块利用部首表示特征和部首及结构嵌入向量预测语义嵌入向量,并与所有语义向量进行匹配以识别汉字。本发明通过减轻图像区域几何特征的纠缠问题,来提高图像特征向语义特征的可转移性,并利用部首嵌入学习和定位汉字图像中的关键部首表示,有效的提高未见汉字的识别能力。
-
公开(公告)号:CN118378621A
公开(公告)日:2024-07-23
申请号:CN202410808562.2
申请日:2024-06-21
Applicant: 厦门理工学院
IPC: G06F40/279 , G06F40/30 , G06F40/284 , G06N3/045 , G06N3/0475 , G06N3/08
Abstract: 本发明提出一种基于多样特征生成的零样本汉字识别方法,解析汉字的部首组成获取表意描述序列;对表意描述序列进行混合语义嵌入获得多语义向量;对已见类汉字图像进行特征提取获取真实特征;构建特征生成网络学习多语义向量到真实特征的映射;通过已见类训练集进行训练后通过多种未见类语义向量生成未见类特征;利用未见类特征结合已见类训练集的特征共同训练识别模型使其具备识别已见类和未见类汉字能力。本发明通过混合语义嵌入提供多种语义来生成训练样本,有助于缓解合成特征的域迁移问题和特征混淆问题,提高特征生成的泛化能力和鲁棒性;通过为识别模型提供高质量的未见类特征,缓解零样本汉字识别的偏倚问题,提高了未见汉字的识别能力。
-
-