-
公开(公告)号:CN116758557A
公开(公告)日:2023-09-15
申请号:CN202310738640.1
申请日:2023-06-21
Applicant: 厦门理工学院
Abstract: 本发明提出一种基于浅层图神经网络的联机手写笔画分类方法,包括以下步骤:步骤S1、对联机手写文档的每一个笔画提取若干特征;提取笔画对的若干特征;步骤S2、得到文档笔画的初始图结构;步骤S3、将初始图结构送入边缘分支进行边缘特征学习;步骤S4、将分类结果作为图的邻接矩阵,从而更新图结构;步骤S5、从更新后的图结构的节点特征中提取连通子图特征与全局特征;步骤S6、在更新后的图结构基础上,得到最终的节点特征。对最终的节点特征进行分类,得到版面分析结果。
-
公开(公告)号:CN116758557B
公开(公告)日:2024-04-05
申请号:CN202310738640.1
申请日:2023-06-21
Applicant: 厦门理工学院
Abstract: 本发明提出一种基于浅层图神经网络的联机手写笔画分类方法,包括以下步骤:步骤S1、对联机手写文档的每一个笔画提取若干特征;提取笔画对的若干特征;步骤S2、得到文档笔画的初始图结构;步骤S3、将初始图结构送入边缘分支进行边缘特征学习;步骤S4、将分类结果作为图的邻接矩阵,从而更新图结构;步骤S5、从更新后的图结构的节点特征中提取连通子图特征与全局特征;步骤S6、在更新后的图结构基础上,得到最终的节点特征。对最终的节点特征进行分类,得到版面分析结果。
-