-
公开(公告)号:CN115827865A
公开(公告)日:2023-03-21
申请号:CN202211557661.5
申请日:2022-12-06
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06F16/35 , G06F16/36 , G06F16/903 , G06F40/268 , G06F40/289 , G06F18/2415 , G06N3/045 , G06N3/042 , G06N3/048 , G06N3/047
Abstract: 本发明提出了一种融合多特征图注意力机制的不良文本分类方法,该方法包括如下步骤:响应于对获取的文本数据进行预处理;将获取的文本数据进行进一步处理,以构建文本图;利用图注意力机制对所述文本图进行特征学习;进一步将图注意力机制嵌入到Transformer网络中进行并行处理获得输出,同时利用Bi_GRU神经网络进行并行处理获得输出;以及将MGTransformer与Bi_GRU的输出拼接,得到最终的文本分类结果。本发明针对社交媒体中不良文本的分类任务,通过从不良文本的特征和文本语义角度出发,结合图注意力机制、Transformer和Bi_GRU构建了一种短文本分类模型。该模型为深度学习在不良文本分类任务上的应用提供了一种新的思路,解决了深度学习模型在不良文本分类问题泛化性差、精度较低的问题。