-
公开(公告)号:CN116306872A
公开(公告)日:2023-06-23
申请号:CN202310298351.4
申请日:2023-03-24
Applicant: 厦门大学深圳研究院
Abstract: 一种对齐不同结构分类神经网络类别精度的方法,涉及计算机视觉。包括以下步骤:1)预训练:利用早期版本数据集对新结构的模型进行预训练以优化模型权重;2)知识蒸馏:利用神经网络知识蒸馏技术进行新老模型间的知识迁移;3)微调全连接层:利用权重冻结技术,冻结神经网络浅层参数,对全连接层部分精度较差的类别进行微调。通过简单的训练方式对齐不同神经网络模型针对相同数据集的各类别精度,有效降低新模型相比于原模型的各类别精度差异。
-
公开(公告)号:CN116306871A
公开(公告)日:2023-06-23
申请号:CN202310298282.7
申请日:2023-03-24
Applicant: 厦门大学深圳研究院
IPC: G06N3/08 , G06N3/0464 , G06N5/04
Abstract: 一种基于重参数化网络的迭代式训练方法,涉及网络结构设计。1)对于给定的重参数化网络结构,设定用于知识蒸馏训练方法的教师网络、最大迭代次数、最大递归深度及每次的迭代次数;2)初始化网络权重或从已收敛的网络中加载预训练权重;3)设定好迭代次数上限,将用于推理的网络重新拓展到用于训练的网络;4)新扩充的分支在满足约束条件下初始化,从数据集中随机抽取部分数据用于前向推理,对各并行分支的BN层参数校正;5)利用教师网络知识蒸馏训练;6)利用重参数化技术无损合并为单分支的纯卷积网络;7)若达到最大递归循环次数或性能已满足需求,则步骤6)所得网络为最终用于部署的网络;反之,则回步骤3),重复上述训练过程。
-