-
公开(公告)号:CN113637194A
公开(公告)日:2021-11-12
申请号:CN202111062125.3
申请日:2021-09-10
Applicant: 厦门大学 , 威斯坦(厦门)实业有限公司
Abstract: 一种碳纤维增强尼龙基复合材料的自感应修复方法,涉及复合材料领域。所述方法包括:使尼龙11结晶析出于碳纤维表面,并在碳纤维表面形成包裹层,制得碳纤维‑尼龙复合材料;在碳纤维两端设置一对铜片,铜片通过外加金属导线引出,两端的金属导线对应连接,使得碳纤维组成回路,外接电路系统;输入或改变外部驱动信号,获取数据,确定电阻变化率实现自感知检测;所述数据包括电阻变化量、应变位移方向、应变位移量等;对所得数据进行分析,根据实际损伤对象,通过控制应变位移方向及位移大小实现碳纤维增强尼龙基复合材料或成型件表面损伤的自修复。避免构建复杂的三位网络修复体系、整体的系统接口复杂、附加增重多;修复效率高。
-
公开(公告)号:CN113637194B
公开(公告)日:2022-04-01
申请号:CN202111062125.3
申请日:2021-09-10
Applicant: 厦门大学 , 威斯坦(厦门)实业有限公司
Abstract: 一种碳纤维增强尼龙基复合材料的自感应修复方法,涉及复合材料领域。所述方法包括:使尼龙11结晶析出于碳纤维表面,并在碳纤维表面形成包裹层,制得碳纤维‑尼龙复合材料;在碳纤维两端设置一对铜片,铜片通过外加金属导线引出,两端的金属导线对应连接,使得碳纤维组成回路,外接电路系统;输入或改变外部驱动信号,获取数据,确定电阻变化率实现自感知检测;所述数据包括电阻变化量、应变位移方向、应变位移量等;对所得数据进行分析,根据实际损伤对象,通过控制应变位移方向及位移大小实现碳纤维增强尼龙基复合材料或成型件表面损伤的自修复。避免构建复杂的三位网络修复体系、整体的系统接口复杂、附加增重多;修复效率高。
-
公开(公告)号:CN108875264A
公开(公告)日:2018-11-23
申请号:CN201810735323.3
申请日:2018-07-06
IPC: G06F17/50
Abstract: 本发明提供了一种用于飞秒激光烧蚀仿真的激光源模型的建立方法,根据激光在空间上和时间上的分布得出焦点下移的激光源模型,所提出的激光源三维模型可以描述实际加工过程中激光焦点随材料去除而下移的情况,通过在加工平面位置处()将表达式分为两段,保证了在材料表面以上的激光能量密度是符合实际的,且在材料表面以下(即材料内部)能量密度是合理衰减的,所提出的激光源三维模型还可以描述实际加工过程中激光焦点在材料平面上的螺旋运动。
-
公开(公告)号:CN108747060B
公开(公告)日:2019-11-19
申请号:CN201810558593.1
申请日:2018-06-01
IPC: B23K26/384 , B23K26/06
Abstract: 本发明公开了一种基于激光能量调控的空腔结构零件打孔背壁防护方法,确定了空腔结构零件背壁材料不发生烧蚀的极限单脉冲能量,通过控制激光打孔过程中激光的单脉冲能量,确保照射到背壁材料的激光能量密度低于材料的烧蚀阈值,实现空腔结构零件激光打孔过程中的背壁防护。整个加工过程无需添加任何保护材料,且工序简单,能够避免材料的浪费,降低生产成本,具有良好的应用前景。
-
公开(公告)号:CN107288690B
公开(公告)日:2019-02-05
申请号:CN201710548967.7
申请日:2017-07-07
Abstract: 一种基于曲线参数化的涡轮叶片气膜孔形位参数修正方法,获取涡轮叶片实际铸造模型;对模型与叶片设计模型配准,根据叶片表面高度,等比例截取截面曲线,再将叶片截面曲线分解为四部分;求解叶片设计模型截面曲线的中弧线;根据气膜孔设计形位参数:中心点坐标求解该点对应的与叶片截面曲线相切的内切圆圆心点;求解圆心点在中弧线上对应的参数;求解叶片铸造模型截面曲线中弧线上对应参数u的点;求解切点,选取对应部位的切点,连接圆心点与气膜孔中心点,连接内切圆圆心点与气膜孔中心点,求解两条连线夹角;位于前后缘部位的气膜孔,以分界点为基准点,对缘头曲线处理,对应参数u相同的点为对应点,求解连线夹角为气膜孔方向变化。
-
公开(公告)号:CN107506519A
公开(公告)日:2017-12-22
申请号:CN201710548930.4
申请日:2017-07-07
IPC: G06F17/50
Abstract: 一种精铸涡轮叶片气膜冷却孔的参数化加工方法,涉及涡轮叶片。提供包括组件铸造变形、装夹定位误差以及小孔加工过程中叶片的移动及变形在内的误差,可实现空心涡轮叶片气膜孔的参数化精确加工。通过求解与计算气膜孔加工过程中的误差传递与积累,对气膜孔的设计参数修正,根据修正后的气膜孔形位参数:气膜孔的中心点,气膜孔的法矢,与气膜孔的孔深,对气膜孔进行加工,提高气膜孔的加工精度,提高涡轮叶片的冷却效率。对空心涡轮叶片的精确成形具有重要的理论意义和应用价值,避免了当前气膜孔加工领域由于仅根据设计参数直接加工而造成的气冷效率降低现状,保证了保证了气膜孔成形精度,可实现叶片气冷效果与设计要求保持一致。
-
公开(公告)号:CN108875264B
公开(公告)日:2021-06-15
申请号:CN201810735323.3
申请日:2018-07-06
IPC: G06F30/20
Abstract: 本发明提供了一种用于飞秒激光烧蚀仿真的激光源模型的建立方法,根据激光在空间上和时间上的分布得出焦点下移的激光源模型,所提出的激光源三维模型可以描述实际加工过程中激光焦点随材料去除而下移的情况,通过在加工平面位置处()将表达式分为两段,保证了在材料表面以上的激光能量密度是符合实际的,且在材料表面以下(即材料内部)能量密度是合理衰减的,所提出的激光源三维模型还可以描述实际加工过程中激光焦点在材料平面上的螺旋运动。
-
公开(公告)号:CN107506519B
公开(公告)日:2020-07-03
申请号:CN201710548930.4
申请日:2017-07-07
Abstract: 一种精铸涡轮叶片气膜冷却孔的参数化加工方法,涉及涡轮叶片。提供包括组件铸造变形、装夹定位误差以及小孔加工过程中叶片的移动及变形在内的误差,可实现空心涡轮叶片气膜孔的参数化精确加工。通过求解与计算气膜孔加工过程中的误差传递与积累,对气膜孔的设计参数修正,根据修正后的气膜孔形位参数:气膜孔的中心点,气膜孔的法矢,与气膜孔的孔深,对气膜孔进行加工,提高气膜孔的加工精度,提高涡轮叶片的冷却效率。对空心涡轮叶片的精确成形具有重要的理论意义和应用价值,避免了当前气膜孔加工领域由于仅根据设计参数直接加工而造成的气冷效率降低现状,保证了保证了气膜孔成形精度,可实现叶片气冷效果与设计要求保持一致。
-
公开(公告)号:CN108747060A
公开(公告)日:2018-11-06
申请号:CN201810558593.1
申请日:2018-06-01
IPC: B23K26/384 , B23K26/06
Abstract: 本发明公开了一种基于激光能量调控的空腔结构零件打孔背壁防护方法,确定了空腔结构零件背壁材料不发生烧蚀的极限单脉冲能量,通过控制激光打孔过程中激光的单脉冲能量,确保照射到背壁材料的激光能量密度低于材料的烧蚀阈值,实现空腔结构零件激光打孔过程中的背壁防护。整个加工过程无需添加任何保护材料,且工序简单,能够避免材料的浪费,降低生产成本,具有良好的应用前景。
-
公开(公告)号:CN107288690A
公开(公告)日:2017-10-24
申请号:CN201710548967.7
申请日:2017-07-07
CPC classification number: F01D5/186 , G06F17/5086
Abstract: 一种基于曲线参数化的涡轮叶片气膜孔形位参数修正方法,获取涡轮叶片实际铸造模型;对模型与叶片设计模型配准,根据叶片表面高度,等比例截取截面曲线,再将叶片截面曲线分解为四部分;求解叶片设计模型截面曲线的中弧线;根据气膜孔设计形位参数:中心点坐标求解该点对应的与叶片截面曲线相切的内切圆圆心点;求解圆心点在中弧线上对应的参数;求解叶片铸造模型截面曲线中弧线上对应参数u的点;求解切点,选取对应部位的切点,连接圆心点与气膜孔中心点,连接内切圆圆心点与气膜孔中心点,求解两条连线夹角;位于前后缘部位的气膜孔,以分界点为基准点,对缘头曲线处理,对应参数u相同的点为对应点,求解连线夹角为气膜孔方向变化。
-
-
-
-
-
-
-
-
-