-
公开(公告)号:CN111681180A
公开(公告)日:2020-09-18
申请号:CN202010451040.3
申请日:2020-05-25
Applicant: 厦门大学
Abstract: 先验驱动的深度学习图像去雾方法,涉及图像处理。先通过将传统的先验和深度神经网络学习调整相结合的方式获取有雾图像的雾的浓度分布信息;再使用雾的浓度分布信息约束和引导主要去雾过程,弥补缺乏真实有雾数据集的问题,最后通过金字塔后处理模块进一步恢复图像去雾结果的细节。既能有效捕获有雾图像的统计信息,又能以数据驱动的方式进行动态调整,有效降低去雾模型的参数量和计算量,并且缓解缺乏同一场景成对有雾/无雾数据集的问题。可以简单的实例化到现有的图像去雾模型中,提升算法的泛化性能。能有效地进行去雾,并且泛化性能优于当前其他去雾方法。
-
公开(公告)号:CN111681180B
公开(公告)日:2022-04-26
申请号:CN202010451040.3
申请日:2020-05-25
Applicant: 厦门大学
Abstract: 先验驱动的深度学习图像去雾方法,涉及图像处理。先通过将传统的先验和深度神经网络学习调整相结合的方式获取有雾图像的雾的浓度分布信息;再使用雾的浓度分布信息约束和引导主要去雾过程,弥补缺乏真实有雾数据集的问题,最后通过金字塔后处理模块进一步恢复图像去雾结果的细节。既能有效捕获有雾图像的统计信息,又能以数据驱动的方式进行动态调整,有效降低去雾模型的参数量和计算量,并且缓解缺乏同一场景成对有雾/无雾数据集的问题。可以简单的实例化到现有的图像去雾模型中,提升算法的泛化性能。能有效地进行去雾,并且泛化性能优于当前其他去雾方法。
-