一种基于协同神经网络的语义角色标注方法

    公开(公告)号:CN102662931A

    公开(公告)日:2012-09-12

    申请号:CN201210111557.3

    申请日:2012-04-13

    Applicant: 厦门大学

    Abstract: 一种基于协同神经网络的语义角色标注方法,涉及语义角色标注、模式识别和协同神经网络领域,涉及将协同神经网络原理引入到浅层语义分析的方法。从训练语料和测试语料中抽取特征,并构造相应的语义特征向量;对语义特征向量进行核变换,并在此基础上构造原型模式和待测试模式;构造序参量,对每个依存成分求若干个侯选角色;构建谓词库,对每个谓词对应的所有依存成分的候选角色进行组合,得到各个谓词的角色链;优化网络参数,进行协同神经网络的动力学演化,从而得到最优角色链,并输出标注模式。首次将协同神经网络原理引入到语义角色标注中,该方法广泛适应于各种自然语言处理任务中。具有较好的应用前景和应用价值。

    一种基于协同神经网络的语义角色标注方法

    公开(公告)号:CN102662931B

    公开(公告)日:2015-03-25

    申请号:CN201210111557.3

    申请日:2012-04-13

    Applicant: 厦门大学

    Abstract: 一种基于协同神经网络的语义角色标注方法,涉及语义角色标注、模式识别和协同神经网络领域,涉及将协同神经网络原理引入到浅层语义分析的方法。从训练语料和测试语料中抽取特征,并构造相应的语义特征向量;对语义特征向量进行核变换,并在此基础上构造原型模式和待测试模式;构造序参量,对每个依存成分求若干个侯选角色;构建谓词库,对每个谓词对应的所有依存成分的候选角色进行组合,得到各个谓词的角色链;优化网络参数,进行协同神经网络的动力学演化,从而得到最优角色链,并输出标注模式。首次将协同神经网络原理引入到语义角色标注中,该方法广泛适应于各种自然语言处理任务中。具有较好的应用前景和应用价值。

Patent Agency Ranking