-
公开(公告)号:CN119025640A
公开(公告)日:2024-11-26
申请号:CN202411039887.5
申请日:2024-07-31
Applicant: 厦门大学
IPC: G06F16/332 , G06F18/2136 , G06F18/214
Abstract: 本发明涉及一种基于参数高效微调的大语言模型稀疏方法及对话生成方法,其根据权重重要性度量同时稀疏LLM和低秩矩阵,保证二者具有相同的稀疏掩码,在微调之后能够合并。在每次迭代中根据互信息指标确定每一层的重要性,在保持平均稀疏率不变的情况下,为较重要的层设置较低的稀疏率,较不重要的层设置较高的稀疏率。在微调过程中计算稀疏LLM每一层的重建误差,在微调参数预算约束下,为具有较大重建误差的层分配较多的微调参数,即分配较大的秩,重建误差较小的层分配较小的秩。因此,本发明能够在高稀疏配置下显著提高大语言模型的性能。