一种基于谱分解的深度学习磁共振波谱重建方法

    公开(公告)号:CN113143243A

    公开(公告)日:2021-07-23

    申请号:CN202110213802.0

    申请日:2021-02-25

    Applicant: 厦门大学

    Inventor: 屈小波 赵金奎

    Abstract: 一种基于谱分解的深度学习磁共振波谱重建方法,涉及磁共振波谱重建方法。基于磁共振波谱时域信号的指数函数特性,生成仿真信号;将仿真信号进行欠采样作为网络的输入,对应的全采样信号作为输出的标签,构建出网络训练集;设计基于谱分解的深度学习网络迭代块,并对网络执行反馈操作,生成重建模型;用上述训练集对网络进行训练后,将需要进行重建的欠采样核磁共振波谱信号作为网络的输入,获得输出的重建波谱信号。这种通过对磁共振信号进行谱分解的深度学习重建方法在重建过程中充分保护和利用了谱峰信息,具有重建速度快、重建质量高的优势。

    一种基于谱分解的深度学习磁共振波谱重建方法

    公开(公告)号:CN113143243B

    公开(公告)日:2023-08-22

    申请号:CN202110213802.0

    申请日:2021-02-25

    Applicant: 厦门大学

    Inventor: 屈小波 赵金奎

    Abstract: 一种基于谱分解的深度学习磁共振波谱重建方法,涉及磁共振波谱重建方法。基于磁共振波谱时域信号的指数函数特性,生成仿真信号;将仿真信号进行欠采样作为网络的输入,对应的全采样信号作为输出的标签,构建出网络训练集;设计基于谱分解的深度学习网络迭代块,并对网络执行反馈操作,生成重建模型;用上述训练集对网络进行训练后,将需要进行重建的欠采样核磁共振波谱信号作为网络的输入,获得输出的重建波谱信号。这种通过对磁共振信号进行谱分解的深度学习重建方法在重建过程中充分保护和利用了谱峰信息,具有重建速度快、重建质量高的优势。

Patent Agency Ranking