一种基于深度学习的跨数据集磁共振多模态超分辨图像的合成方法

    公开(公告)号:CN119205527A

    公开(公告)日:2024-12-27

    申请号:CN202411377049.9

    申请日:2024-09-30

    Applicant: 厦门大学

    Abstract: 一种基于深度学习的跨数据集磁共振多模态超分辨图像的合成方法,涉及磁共振成像领域。利用深度学习中的无监督方法,采用生成对抗网络的架构,实现磁共振多模态超分辨图像的合成。将图像经过数据预处理,包括配准,切片,归一化。然后构建高频模板,将数据进行FFT变换,得到其K空间,将K空间图像与高频模板做乘积得到其K空间高频信息,再执行IFFT变换得到图像域的高频信息。将准备好的图像以及其高频信息作为输入送进网络。通过网络训练,实现多模态数据的合成。构造超分辨率重建网络的图像退化算法。构造超分辨率图像重建的网络架构,将退化后的图像以及原来的真实图像输入网络进行训练,得到高分辨率的多模态的磁共振图像。

Patent Agency Ranking