一种基于深度学习的篡改图像检测方法

    公开(公告)号:CN110349136A

    公开(公告)日:2019-10-18

    申请号:CN201910573995.3

    申请日:2019-06-28

    Applicant: 厦门大学

    Abstract: 一种基于深度学习的篡改图像检测方法,涉及图像被动取证领域。构造基于多尺度噪声约束的卷积层,用以获得图像中的高频噪声残差;使用双流网络进行篡改图像检测;使用多任务学习方法,同时实现图像区域是否篡改的分类,以及篡改区域的检测和分割任务;在网络优化时,提取感兴趣区域提取网络、篡改分类支路、篡改区域的检测支路以及分割支路这四部分的输出特征,计算网络的误差进行反向传播,进一步调整网络参数,使网络达到最优解。可实现对于图像是否篡改的识别,并对篡改图像中的篡改区域做出精确的检测和分割,使其适用于实际应用场景。通过深度学习方法检测图像的真实性,进而解决图像恶意篡改问题,提高篡改检测的准确率和泛化能力。

Patent Agency Ranking