-
公开(公告)号:CN113627146B
公开(公告)日:2024-05-28
申请号:CN202110918103.6
申请日:2021-08-11
Applicant: 厦门大学
IPC: G06F40/186 , G06F40/211 , G06F40/237 , G06N5/02
Abstract: 基于知识约束的两步式辟谣文本生成方法,涉及自然语言处理领域。针对辟谣文本对外部知识高度依赖以及辟谣长文本生成困难的问题,以谣言为研究对象,基于Transformer的多层解码器架构建立知识文本生成模型,利用知识三元组生成知识文本序列,同时采用pytorch版的GPT2‑ML模型建立辟谣结论生成模型,引入谣言约束和知识约束生成辟谣结论,将生成的知识文本序列和辟谣结论共同组成辟谣文本。两步式辟谣文本方法效果明显优于其他的生成方法,不仅缓解辟谣长文本生成困难的问题,还使生成的辟谣文本更具逻辑性。
-
公开(公告)号:CN113627146A
公开(公告)日:2021-11-09
申请号:CN202110918103.6
申请日:2021-08-11
Applicant: 厦门大学
IPC: G06F40/186 , G06F40/211 , G06F40/237 , G06N5/02
Abstract: 基于知识约束的两步式辟谣文本生成方法,涉及自然语言处理领域。针对辟谣文本对外部知识高度依赖以及辟谣长文本生成困难的问题,以谣言为研究对象,基于Transformer的多层解码器架构建立知识文本生成模型,利用知识三元组生成知识文本序列,同时采用pytorch版的GPT2‑ML模型建立辟谣结论生成模型,引入谣言约束和知识约束生成辟谣结论,将生成的知识文本序列和辟谣结论共同组成辟谣文本。两步式辟谣文本方法效果明显优于其他的生成方法,不仅缓解辟谣长文本生成困难的问题,还使生成的辟谣文本更具逻辑性。
-