-
公开(公告)号:CN108875579B
公开(公告)日:2022-08-05
申请号:CN201810460615.0
申请日:2018-05-15
Applicant: 厦门大学
Abstract: 本发明旨在提出一种基于形态学的近景手势识别方法。首先采集RGB彩色图像和深度图像,利用haar特征检测器,获取彩色图中的手部掩码box1;依次根据RGBD对齐原理、一阶差分和阈值处理获得分割后手部区域的RGBD图,并裁剪下感兴趣区域ROI得到手部掩码box3;再对手部掩码box3求解最大内切圆,通过内切圆的几何参数估计掌部大小与掌心位置;设计坐标淘汰机制提取指端区域和指端数N,并根据N的值选择提前训练好的CNN分类模型,对手势进行分类,得到最终手势类型。该方法在识别手部区域过程中特别地设计了一种坐标淘汰机制和一种新型的科学的图像卷积算子,该算子具有旋转不变性,能对近景的复杂手势进行快速识别。
-
公开(公告)号:CN108875579A
公开(公告)日:2018-11-23
申请号:CN201810460615.0
申请日:2018-05-15
Applicant: 厦门大学
Abstract: 本发明旨在提出一种基于形态学的近景手势识别方法。首先采集RGB彩色图像和深度图像,利用haar特征检测器,获取彩色图中的手部掩码box1;依次根据RGBD对齐原理、一阶差分和阈值处理获得分割后手部区域的RGBD图,并裁剪下感兴趣区域ROI得到手部掩码box3;再对手部掩码box3求解最大内切圆,通过内切圆的几何参数估计掌部大小与掌心位置;设计坐标淘汰机制提取指端区域和指端数N,并根据N的值选择提前训练好的CNN分类模型,对手势进行分类,得到最终手势类型。该方法在识别手部区域过程中特别地设计了一种坐标淘汰机制和一种新型的科学的图像卷积算子,该算子具有旋转不变性,能对近景的复杂手势进行快速识别。
-