-
公开(公告)号:CN114677129A
公开(公告)日:2022-06-28
申请号:CN202210401092.9
申请日:2022-04-18
申请人: 南通大学
摘要: 本发明提供一种基于区块链的艺术品确权流通方法,包括如下步骤:S1、基于ubantu系统,使用go‑ethereum对区块链进行创世区块的初始化和私人网络搭建;S2、基于remix ide平台,使用solidity语言对艺术品上链交易编写智能合约;S3、对智能合约的性能和安全进行测试,用户上链确权,并进行交易流通,成功确权。本发明针对艺术品的数字确权流通,提供一种基于区块链的艺术品确权流通方法,通过上链确权,交易流通达到艺术品确权流通的目的。
-
公开(公告)号:CN113176998A
公开(公告)日:2021-07-27
申请号:CN202110503077.0
申请日:2021-05-10
申请人: 南通大学
IPC分类号: G06F11/36
摘要: 本发明提供一种基于源选择的跨项目软件缺陷预测方法,包括如下步骤:S1、数据集构建;S2、构建特征选择方法集FSelection;S3、获取最优特征选择方法BFMethod;S4、获取最优特征数量FThreshold;S5、构建源项目选择方法集SPSelection;S6、构建基于源选择的跨项目缺陷预测方法CPSPM。本发明提出多种源项目选择方法,可以为后续数据训练提供更好的源项目,该方法能有效提高软件缺陷预测的效率。
-
公开(公告)号:CN115269378A
公开(公告)日:2022-11-01
申请号:CN202210717461.5
申请日:2022-06-23
申请人: 南通大学
摘要: 本发明提供一种基于域特征分布的跨项目软件缺陷预测方法,包括如下步骤:S1、构建项目向量集PVS;S2、构建源域实例候选索引集SDCI;S3、构建源域实例候选集SDCS;S4、构建适应域特征分布索引DFDI;S5、构建适应域特征分布的训练集DFDD;S6、构建基于域特征分布的跨项目软件缺陷预测方法DFDCP。本发明提出一种基于域特征分布的跨项目软件缺陷预测方法,在源域实例候选集中,由目标实例的去均值化向量进行实例再选择,构建适应域特征分布的实例集,使用该方法构建的训练集有利于进一步建立精确的跨项目缺陷预测模型,实现更好的跨项目缺陷预测效果。
-
公开(公告)号:CN114781542A
公开(公告)日:2022-07-22
申请号:CN202210501969.1
申请日:2022-05-09
申请人: 南通大学
摘要: 本发明提供一种基于动态特征引导实例选择的跨项目缺陷预测方法,包括如下步骤:S1、构建项目实例向量集CPIVS;S2、构建预训练动态特征PREDF;S3、计算预训练动态特征与实例特征之间距离;S4、构建引导实例选择索引集GISI;S5、构建基于动态特征引导实例选择的训练集DFD;S6、构建基于动态特征引导实例选择的跨项目缺陷预测方法DFGIS。本发明通过动态调整实例集特征实现更加准确的源实例选择,使用该方法构建的训练集有利于建立精确的跨项目缺陷预测模型,进一步提高跨项目缺陷预测效果。
-
公开(公告)号:CN114860595A
公开(公告)日:2022-08-05
申请号:CN202210491038.8
申请日:2022-05-07
申请人: 南通大学
摘要: 本发明属于软件缺陷预测技术领域,提供一种基于特征相关性分析的实例选择跨项目缺陷预测方法,包括如下步骤:S1、构建项目实例向量集CPIVS;S2、构建相关性权重索引集CWIS;S3、构建相关性特征集CFS;S4、计算实例相关性特征之间距离;S5、构建基于相关性训练集CTS;S6、构建基于特征相关性分析的实例选择跨项目缺陷预测方法FCADP。本发明通过计算每一个目标实例选择出的项目特征与源项目选择出的特征之间的相似度进行源实例选择,将选出的所有源实例组成训练数据集,根据目标实例特征进一步合理的选择源实例。
-
公开(公告)号:CN115269378B
公开(公告)日:2023-06-09
申请号:CN202210717461.5
申请日:2022-06-23
申请人: 南通大学
IPC分类号: G06F11/36 , G06F18/2113 , G06F18/22 , G06F18/214
摘要: 本发明提供一种基于域特征分布的跨项目软件缺陷预测方法,包括如下步骤:S1、构建项目向量集PVS;S2、构建源域实例候选索引集SDCI;S3、构建源域实例候选集SDCS;S4、构建适应域特征分布索引DFDI;S5、构建适应域特征分布的训练集DFDD;S6、构建基于域特征分布的跨项目软件缺陷预测方法DFDCP。本发明提出一种基于域特征分布的跨项目软件缺陷预测方法,在源域实例候选集中,由目标实例的去均值化向量进行实例再选择,构建适应域特征分布的实例集,使用该方法构建的训练集有利于进一步建立精确的跨项目缺陷预测模型,实现更好的跨项目缺陷预测效果。
-
公开(公告)号:CN114816516A
公开(公告)日:2022-07-29
申请号:CN202210452163.8
申请日:2022-04-27
申请人: 南通大学
IPC分类号: G06F8/73 , G06F40/289 , G06N3/04 , G06N3/08
摘要: 本发明提供一种基于多重源码表示和循环神经网络的代码注释生成方法,包括如下步骤:S1、收集Java代码注释对,构建语料库;S2、在序列化处理层,将语料库中的源代码转换为token序列、SBT序列和API序列;S3、在编码器层,使用双向GRU作为编码器,为3个序列分别构建codeseq编码器、SBTseq编码器和APIseq编码器,学习源代码不同级别的信息;S4、在解码器层,使用单向GRU构建解码器,并利用teacher forcing策略训练模型;S5、在3个编码器中的每个编码器后添加注意力层,将三个编码器输入和解码器输入的注意力矩阵链接起来并用一个全连接层学习如何组合每个输入的代码,最终输出代码注释。本发明提高代码注释生成的准确性,提高软件开发人员在软件开发过程中的效率,节省开发时间。
-
-
-
-
-
-