基于特征选择和stacking模型融合的风电机组故障诊断方法

    公开(公告)号:CN115853722A

    公开(公告)日:2023-03-28

    申请号:CN202211522250.2

    申请日:2022-11-30

    Abstract: 本发明提出了一种基于特征选择和stacking模型融合的风电机组故障诊断方法,包括以下步骤:S1,采集SCADA数据,所述SCADA数据包括风速、风向角、齿轮箱温度、叶片角度和发电量;S2,对小类别数据进行SMOTE过采样,增加其比例,平衡故障类别比例;S3,使用RFECV进行特征选择,并将数据划分为训练集与测试集;S4,使用训练集对stacking模型进行训练,得到训练完毕的stacking模型;S5,将待测的SCADA数据输入训练完毕的stacking模型中,得到风电机组故障诊断结果。本发明相较于其它传统方法,能够得到更加准确的风电机组故障诊断结果。

Patent Agency Ranking