-
公开(公告)号:CN115240122A
公开(公告)日:2022-10-25
申请号:CN202211158753.6
申请日:2022-09-22
Applicant: 南昌工程学院
IPC: G06V20/40 , G06V10/30 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于深度强化学习的空气预热器区域识别方法,选取视频流中运行状态图像的识别区域,并选取模板帧,将视频流中运行状态图像都送入已经训练好的最优支持向量机模型进行分类,随后使用NanoDet模型对分类得到的运行状态图像的识别区域进行检测,得到所需特征点,以模板帧为NanoDet模型输出结果进行特征点仿射匹配,完成对检测帧的网格区域识别,从而对空气预热器转子的网格区域识别。本发明使用支持向量机模型对视频流进行分类得到最佳检测帧,使用NanoDet模型对最佳检测帧进行检测,最后使用仿射变换得到运行状态图像中其他区域的具体位置,可以较好完成空气预热器区域定位任务。
-
公开(公告)号:CN114897451A
公开(公告)日:2022-08-12
申请号:CN202210821750.X
申请日:2022-07-13
Applicant: 南昌工程学院
Abstract: 本发明属于电力数据处理技术领域,涉及一种考虑需求响应用户关键特征的双层聚类修正方法及装置,该方法包括:获取用户用电数据集并进行降维处理;利用集成聚类算法整合各成员算法的优势,对用户用电数据集进行第一层聚类分析;获取关键家庭特征因素;以第一层聚类分析和关键家庭特征因素为基础对属于同一类的用户群体进行第二层聚类分析;采用Levy飞行策略和蝴蝶耦合灰狼优化算法进行训练,修正第二层聚类分析结果,得到考虑用户用电信息和多维影响因素的聚类分析结果。本发明可得到综合考虑用户用电数据和多维影响因素的聚类分析结果,可以精准区分不同用户用电特性。
-
公开(公告)号:CN114897451B
公开(公告)日:2022-09-13
申请号:CN202210821750.X
申请日:2022-07-13
Applicant: 南昌工程学院
Abstract: 本发明属于电力数据处理技术领域,涉及一种考虑需求响应用户关键特征的双层聚类修正方法及装置,该方法包括:获取用户用电数据集并进行降维处理;利用集成聚类算法整合各成员算法的优势,对用户用电数据集进行第一层聚类分析;获取关键家庭特征因素;以第一层聚类分析和关键家庭特征因素为基础对属于同一类的用户群体进行第二层聚类分析;采用Levy飞行策略和蝴蝶耦合灰狼优化算法进行训练,修正第二层聚类分析结果,得到考虑用户用电信息和多维影响因素的聚类分析结果。本发明可得到综合考虑用户用电数据和多维影响因素的聚类分析结果,可以精准区分不同用户用电特性。
-
-