-
公开(公告)号:CN105244896B
公开(公告)日:2018-06-12
申请号:CN201510443872.X
申请日:2015-07-24
Applicant: 中国南方电网有限责任公司电网技术研究中心 , 南方电网科学研究院有限责任公司 , 清华大学
Abstract: 本发明涉及运行时电网储能系统容量的设计方法;针对储能系统用于电力系统二次调频的问题,采用滤波器将AGC功率指令在发电机和储能系统之间进行分配,以最小化发电机和储能系统执行调频任务的日均成本为目标,建立调频容量的优化模型。通过优化滤波参数得到总日均成本最低的最优调频容量,为储能系统容量配置提供最优方案。根据运行时发电机和储能系统各自的调频能力对调频任务进行调整;根据储能系统剩余能量对储能系统的调频任务进行调整的策略,可以将储能系统剩余能量维持在合理区间;储能系统参与AGC能够极大的提高整个系统对AGC功率指令的响应能力,降低发电机的爬坡功率。
-
公开(公告)号:CN106374580A
公开(公告)日:2017-02-01
申请号:CN201610940790.0
申请日:2016-10-25
Applicant: 珠海瓦特电力设备有限公司 , 南方电网科学研究院有限责任公司
IPC: H02J7/00 , H01M10/44 , H01M10/058
CPC classification number: H02J7/0063 , H01M10/058 , H01M10/44 , H02J2007/0067
Abstract: 本发明一方面变电站直流电源三元锂电池在线活化方法,包括:将三元锂电池按串联的形式组合成组;配置蓄电池管理系统及均衡装置;实时监测系统运行情况;其特征在于:所述方法进一步包括:对三元锂电池进行间歇式在线放电;对三元锂电池实施内部均衡操作。根据本发明的另一方提供变电站直流电源三元锂电池在线活化装置,包括:三元锂电池组,蓄电池管理系统,蓄电池均衡装置。所述三元锂电池在线活化装置包括间歇式在线放电装置,所述蓄电池管理系统连接所述三元锂电池组,所述间歇式在线放电装置连接所述三元锂电池组,所述蓄电池均衡装置连接所述三元锂电池组。
-
公开(公告)号:CN103401259B
公开(公告)日:2015-11-18
申请号:CN201310315867.1
申请日:2013-07-25
Applicant: 南方电网科学研究院有限责任公司
IPC: H02J3/28
Abstract: 本发明涉及电网调度及管理技术领域,具体涉及一种储能系统无缝切换控制方法,通过采用可重置PI控制器来替代现有的普通PI控制器,结合PQ、VF模式同步运行的控制策略,即储能系统工作时,PQ控制模块和VF控制模块均在运行,但只有其中一个运行模式下的控制模块的控制结果才输入到下一环节的控制中,而没有输入到下一环节的另一个控制模块的输出结果被屏蔽,并不产生控制效果。由此实现了储能系统离/并网无缝切换,在用户不停电的情况下实现无缝切换,提高了电能质量。
-
公开(公告)号:CN102368625B
公开(公告)日:2014-11-05
申请号:CN201110305598.1
申请日:2011-10-10
Applicant: 南方电网科学研究院有限责任公司 , 中国南方电网有限责任公司调峰调频发电公司 , 天津天大求实电力新技术股份有限公司
IPC: H02J7/00
Abstract: 本发明是一种抑制可再生能源输出功率波动的电池储能系统的控制方法。该控制方法基于低通滤波原理,通过一阶巴特沃兹低通滤波器对可再生能源输出功率值进行滤波,得到可再生能源输出功率目标值,利用电池储能系统的充放电控制补偿可再生能源输出功率目标值与测量值之间的差值,从而达到抑制可再生能源输出功率波动的目的。本发明基于基本滤波原理,利用可再生能源输出功率抑制效果好和加入反馈环节,避免电池的过充过放,并进行了创新,在加入反馈环节时,通过调节滤波时间常数的大小,间接地改变储能系统的输出功率,从而在抑制可再生能源输出功率波动的同时,有效地避免了电池的过充过放,维持了电池储能系统的稳定运行,延长了电池的使用寿命。
-
公开(公告)号:CN102622475B
公开(公告)日:2014-04-16
申请号:CN201210050601.4
申请日:2012-02-29
Applicant: 中国南方电网有限责任公司调峰调频发电公司 , 南方电网科学研究院有限责任公司 , 清华大学
IPC: G06F17/50
Abstract: 本发明是一种基于二次规划模型的电池储能系统削峰填谷日前优化方法。本发明的模型中的目标函数为凸函数,要求解的二次规划为凸二次规划,理论上只要求得KKT点就找到了全局最优解,计算方法成熟,初始可行解方便易得。本发明求解过程中不需要将电池的剩余电量离散化。本发明是一种设计巧妙,性能优良,方便实用的基于二次规划模型的电池储能系统削峰填谷日前优化方法。
-
公开(公告)号:CN102916486A
公开(公告)日:2013-02-06
申请号:CN201210371717.8
申请日:2012-09-28
Applicant: 南方电网科学研究院有限责任公司
IPC: H02J9/08
Abstract: 本发明属于电力系统智能微电网技术领域,涉及一种微电网柴储配合控制方法。柴储配合控制分两种模式,第一种模式是柴储不切换,柴油发电机一直做系统主电源,储能起辅助调节作用,此时储能工作于PQ方式。另一种是柴储切换,当柴油发电机做主电源时,储能工作在PQ方式,当储能充电至SOC上限时,主电源由柴油发电机切换至储能系统,此时储能工作在VF方式,当储能放电至SOC下限时,主电源由储能切换至柴油发电机。本发明解决了微电网稳态控制问题,可以有效提高新能源利用率和运行经济性,提高微电网运行的安全稳定性。
-
公开(公告)号:CN102447285A
公开(公告)日:2012-05-09
申请号:CN201110303679.8
申请日:2011-10-10
Applicant: 南方电网科学研究院有限责任公司
Abstract: 本发明是一种大容量电池换流器及其控制方法。本发明的换流器包括相互并联的若干分支单级式DC/AC换流器模块,各蓄电池簇(BatteryCluster,BC)分别通过各分支单级式DC/AC换流器模块将能量汇集到交流母线,经变压后与交流电网并网或独立带负载运行。本发明解决了电池组串并联带来的环流与均流问题,采用“模块组合,轮换均衡”技术,有效提高低功率下的系统效率和交、直流侧电能质量,实现电池组均衡使用。各蓄电池支路可进行智能充放电管理,控制功能和保护功能完全独立配置,保证系统的最大可用性。本发明结构简单,体积较小,能量损耗小,易于模块化,且可靠性较高,输出谐波小,系统扩展性好,单元故障时可降容量运行,对换流器的绝缘水平要求低。本发明大容量电池换流器的控制方法操作简单方便,易于实现。
-
公开(公告)号:CN107167661B
公开(公告)日:2023-05-16
申请号:CN201710359027.3
申请日:2017-05-19
Applicant: 南方电网科学研究院有限责任公司
IPC: G01R27/02
Abstract: 本申请实施例提供一种绝缘电阻的检测装置及方法,该装置包括:分压模块、采样模块以及处理器;分压模块的第一输出端连接电化学储能系统中的直流侧装置的第一输入端,分压模块的第二输出端连接至直流侧装置的第二输入端,分压模块的第三输出端连接至电化学储能系统的地线。处理器用于控制分压模块中各开关的闭合或断开,以触发分压模块中的电路连接发生变化;采样模块用于采集分压模块中不同电路连接状态下的采样电阻的电压;处理器还用于:根据采样电阻的电压以及采样电阻的电阻,确定电化学储能系统的绝缘电阻。可见,实现了对电化学储能系统的绝缘电阻的检测。
-
公开(公告)号:CN111224409A
公开(公告)日:2020-06-02
申请号:CN202010050440.3
申请日:2020-01-17
Applicant: 南方电网科学研究院有限责任公司 , 佛山科学技术学院
Abstract: 本发明提供了一种基于虚拟阻抗的直流接入装置过电流抑制方法,包括如下步骤:在直流微网并网换流器的输出侧增加虚拟阻抗L;对直流微网并网换流器的输出电流进行实时检测,当输出电流快速变化时,利用虚拟阻抗调整直流微网并网换流器的电压输出;对直流微网并网换流器的电压输出进行修正,以使直流微网并网换流器的电压输出反馈值为直流微网并网换流器的电压测量值与电压降增量之和,完成对直流微网瞬时故障过电流的抑制。本发明在参数调整过程中,较实际设备更加的灵活,可节省工程造价,有更好的经济性,不存在限流电抗器选型和定值困难等问题。
-
公开(公告)号:CN105226725B
公开(公告)日:2019-04-23
申请号:CN201510446653.7
申请日:2015-07-24
Applicant: 中国南方电网有限责任公司电网技术研究中心 , 南方电网科学研究院有限责任公司 , 清华大学
IPC: H02J3/46
Abstract: 本发明涉及运行时发电机和储能系统之间的功率分配和协调方法。针对储能系统用于电力系统二次调频的问题,采用滤波器将AGC功率指令在发电机和储能系统之间进行分配。以最小化发电机和储能系统执行调频任务的日均成本为目标,建立调频容量的优化模型。通过优化滤波参数得到总日均成本最低的最优调频容量,为储能系统容量配置提供最优方案。根据运行时发电机和储能系统各自的调频能力对调频任务进行调整。根据储能系统剩余能量对储能系统的调频任务进行调整的策略,可以将储能系统剩余能量维持在合理区间。储能系统参与AGC能够极大的提高整个系统对AGC功率指令的响应能力,降低发电机的爬坡功率。
-
-
-
-
-
-
-
-
-