-
公开(公告)号:CN113627543A
公开(公告)日:2021-11-09
申请号:CN202110931933.2
申请日:2021-08-13
Applicant: 南开大学
Abstract: 本发明公开了一种对抗攻击检测方法,包括以下步骤:步骤S1,通过多种对抗攻击算法生成对于目标深度神经网络的对抗样本,并与自然输入样本混合作为输入样本;步骤S2,将输入样本输入到目标深度神经网络中提取全局特征和隐含层特征;步骤S3,将输入样本的全局特征和隐含层特征进行特征融合,得到输入样本的最终特征表示;步骤S4,使用输入样本的最终特征表示训练分类器,得到对抗样本检测模型;步骤S5,利用步骤4得到的对抗样本检测模型检测输入数据中是否含有对抗样本。本发明可以为被攻击目标系统的不同隐藏层动态分配不同的权重,不仅能发现单攻击模式下的对抗样本,而且能够不受混合攻击模式影响地检测出每种攻击方法所产生的对抗样本。
-
公开(公告)号:CN113627543B
公开(公告)日:2023-08-22
申请号:CN202110931933.2
申请日:2021-08-13
Applicant: 南开大学
IPC: G06F21/55 , G06F18/2415 , G06F18/214 , G06F18/25 , G06N3/0464 , G06N3/047 , G06N3/094 , G06N3/0475
Abstract: 本发明公开了一种对抗攻击检测方法,包括以下步骤:步骤S1,通过多种对抗攻击算法生成对于目标深度神经网络的对抗样本,并与自然输入样本混合作为输入样本;步骤S2,将输入样本输入到目标深度神经网络中提取全局特征和隐含层特征;步骤S3,将输入样本的全局特征和隐含层特征进行特征融合,得到输入样本的最终特征表示;步骤S4,使用输入样本的最终特征表示训练分类器,得到对抗样本检测模型;步骤S5,利用步骤4得到的对抗样本检测模型检测输入数据中是否含有对抗样本。本发明可以为被攻击目标系统的不同隐藏层动态分配不同的权重,不仅能发现单攻击模式下的对抗样本,而且能够不受混合攻击模式影响地检测出每种攻击方法所产生的对抗样本。
-