-
公开(公告)号:CN117556866B
公开(公告)日:2024-03-29
申请号:CN202410028518.X
申请日:2024-01-09
Applicant: 南开大学
Abstract: 本发明涉及图数据挖掘技术领域,提供一种无源域图的数据域适应网络构建方法。包括:通过图神经网络对目标图进行预测,获得软标签预测结果;通过软标签预测结果对双学生网络进行蒸馏预训练,获得双学生网络模型;通过高斯混合模型拟合双学生网络模型输出的多个节点的损失值,获得拟合值并将双学生网络模型的输出结果划分为源域相似子域及目标特定子域;对源域相似子域及目标特定子域进行拓扑感知数据融合,获得源域相似子域节点的硬标签预测结果;基于软标签预测结果及硬标签预测结果对双学生网络模型进行迭代训练优化,获得数据域适应网络。本发明能够获得代表全图数据分布的高质量训练样本,还降低了模型训练过程中认知偏差的积累。
-
公开(公告)号:CN117556866A
公开(公告)日:2024-02-13
申请号:CN202410028518.X
申请日:2024-01-09
Applicant: 南开大学
Abstract: 本发明涉及图数据挖掘技术领域,提供一种无源域图的数据域适应网络构建方法。包括:通过图神经网络对目标图进行预测,获得软标签预测结果;通过软标签预测结果对双学生网络进行蒸馏预训练,获得双学生网络模型;通过高斯混合模型拟合双学生网络模型输出的多个节点的损失值,获得拟合值并将双学生网络模型的输出结果划分为源域相似子域及目标特定子域;对源域相似子域及目标特定子域进行拓扑感知数据融合,获得源域相似子域节点的硬标签预测结果;基于软标签预测结果及硬标签预测结果对双学生网络模型进行迭代训练优化,获得数据域适应网络。本发明能够获得代表全图数据分布的高质量训练样本,还降低了模型训练过程中认知偏差的积累。
-