-
公开(公告)号:CN107292234B
公开(公告)日:2020-06-30
申请号:CN201710347401.8
申请日:2017-05-17
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于信息边缘和多模态特征的室内场景布局估计方法,针对图像用边缘检测提取直线段由此估计出图像消失点,从消失点出发做采样射线粗划分图像区域;用全卷积神经网络(FCNs)获取信息边缘图,选取图中能量较高区域并细采样产生布局候选项;基于积分几何提取图像的线段、几何上下文、深度、法向量特征;考虑布局候选项与区域级特征一元和二元的映射关系,设计布局估计的结构化回归模型,引入结构化学习算法,能量函数最小的即为室内场景布局估计。本发明逐步缩小候选项生成区域,并结合多种模态特征对布局候选项进行约束,提高了室内估计布局精度。
-
公开(公告)号:CN107292234A
公开(公告)日:2017-10-24
申请号:CN201710347401.8
申请日:2017-05-17
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于信息边缘和多模态特征的室内场景布局估计方法,针对图像用边缘检测提取直线段由此估计出图像消失点,从消失点出发做采样射线粗划分图像区域;用全卷积神经网络(FCNs)获取信息边缘图,选取图中能量较高区域并细采样产生布局候选项;基于积分几何提取图像的线段、几何上下文、深度、法向量特征;考虑布局候选项与区域级特征一元和二元的映射关系,设计布局估计的结构化回归模型,引入结构化学习算法,能量函数最小的即为室内场景布局估计。本发明逐步缩小候选项生成区域,并结合多种模态特征对布局候选项进行约束,提高了室内估计布局精度。
-