基于深度神经网络预测MLC闪存电压阈值的自适应方法

    公开(公告)号:CN108777157A

    公开(公告)日:2018-11-09

    申请号:CN201810429797.5

    申请日:2018-05-08

    Abstract: 本发明公开了一种基于深度神经网络预测MLC闪存电压阈值的自适应方法,包括如下步骤:获取当前合适的电压阈值;估计存储电压分布的特征值;利用深度神经网络建立存储电压分布的特征值与电压阈值的关系。通过大量存储电压的分布特征值作为训练输入,训练输出结果作为预测的电压阈值,进行一次训练,将训练好的网络权重保存下来;对MLC闪存进行一次译码,若译码成功,则进入下一次译码。若译码失败,获取存储电压的分布特征值;获取电压阈值;建立高斯模型,从而获取新的LLR信息;重新进行一次译码。本发明通过建立当前存储电压的分布与其分布对应的较优电压阈值的关系,从而实现优化不同数据保留时间的电压阈值优化。

    基于深度神经网络预测MLC闪存电压阈值的自适应方法

    公开(公告)号:CN108777157B

    公开(公告)日:2021-07-09

    申请号:CN201810429797.5

    申请日:2018-05-08

    Abstract: 本发明公开了一种基于深度神经网络预测MLC闪存电压阈值的自适应方法,包括如下步骤:获取当前合适的电压阈值;估计存储电压分布的特征值;利用深度神经网络建立存储电压分布的特征值与电压阈值的关系。通过大量存储电压的分布特征值作为训练输入,训练输出结果作为预测的电压阈值,进行一次训练,将训练好的网络权重保存下来;对MLC闪存进行一次译码,若译码成功,则进入下一次译码。若译码失败,获取存储电压的分布特征值;获取电压阈值;建立高斯模型,从而获取新的LLR信息;重新进行一次译码。本发明通过建立当前存储电压的分布与其分布对应的较优电压阈值的关系,从而实现优化不同数据保留时间的电压阈值优化。

Patent Agency Ranking