一种提高电磁屏蔽效能的可调多级屏蔽方法

    公开(公告)号:CN113133299A

    公开(公告)日:2021-07-16

    申请号:CN202110465304.5

    申请日:2021-04-28

    Abstract: 一种提高电磁屏蔽效能的可调多级屏蔽方法,包括如下步骤:制备得到不同质量的柔性自支撑Ti3C2薄膜;将不同质量的柔性自支撑Ti3C2薄膜进行叠加,测试Ti3C2薄膜不同层数叠加结构的电磁屏蔽效能;根据得到的不同层数叠加结构的电磁屏蔽效能,调节Ti3C2薄膜叠加结构的间距d,测试电磁屏蔽效能,得到电磁屏蔽效能最优时的Ti3C2薄膜叠加结构。本方法具有低成本、低能耗、工艺简易的优点,又达到了提升电磁屏蔽效能的目的。

    一种金属卟啉框架/聚吡咯复合柔性电极的制备方法和应用

    公开(公告)号:CN108550469B

    公开(公告)日:2020-03-27

    申请号:CN201810361315.7

    申请日:2018-04-20

    Abstract: 本发明公开了一种金属卟啉框架/聚吡咯复合柔性电极的制备方法和应用,该柔性电极是以5,10,15,20‑四羧基苯基铜卟啉(Cu‑TCPP)超薄纳米片与聚吡咯(PPy)通过电泳沉积‑电化学聚合方式制备的。本发明所述的金属卟啉框架/聚吡咯复合柔性电极的制备方法简单,常温常压条件下即可完成;具有良好的机械性能,经多角度卷曲后仍可以恢复原状;通过控制金属卟啉框架的沉积量和电化学聚合的电压值可以调控PPy的形貌;储能性质优于聚吡咯柔性电极的性质且Cu‑TCPP/PPy具有电化学储能性质。

    不同形貌π-d共轭Fe-HHTP金属有机框架及相关电极的制备

    公开(公告)号:CN109942832A

    公开(公告)日:2019-06-28

    申请号:CN201910311069.9

    申请日:2019-04-18

    Abstract: 本发明公开了不同形貌π-d共轭Fe-HHTP金属有机框架及相关电极的制备。首先,本发明公开的π-d共轭Fe-HHTP金属有机框架的制备方法简单,采用溶剂热法一步即可完成;其次,通过调控表面活性剂PVP的添加量即可实现Fe-HHTP由球状堆积到规则立方体状的形貌调控,调控效果明显;最后,将Fe-HHTP材料与乙炔黑、聚四氟乙烯(PTFE)乳液按照质量比8:1:1混合均匀,以碳纸为基底制备的Fe-HHTP电极具备一定的氧化还原性质和电化学储能性质。

    一种屏蔽棉的制备方法及电磁屏蔽暗室

    公开(公告)号:CN114585250B

    公开(公告)日:2025-01-14

    申请号:CN202210354673.1

    申请日:2022-04-06

    Abstract: 本发明公开了一种屏蔽棉的制备方法及电磁屏蔽暗室。采用浸渍方法将预处理后的聚氨酯海绵浸入到Ti3C2纳米片分散液,得到具有电磁屏蔽作用的导电海绵。待其在冷冻真空干燥机干燥后,用作防辐射层,制作成电磁屏蔽暗室,实现防辐射应用。本发明制作的导电海绵屏蔽暗室方法简单,造价更低,质量更轻,可控制其空间大小,具有便携式移动的特点。可应用在信息保护、数据安全、防电磁屏蔽等场合,防止通讯窃听和信息窃取,避免被恶意定位和跟踪,也可降低外界电磁干扰,保证暗室内电子、电气设备正常工作。具有很高的推广利用价值。

    一种TiCu-HHTP MOF材料及其制备和应用

    公开(公告)号:CN116741548A

    公开(公告)日:2023-09-12

    申请号:CN202310881758.X

    申请日:2023-07-18

    Abstract: 本发明公开一种TiCu‑HHTP MOF材料及其制备和应用,属于电容技术领域。TiCu‑HHTP复合材料为双金属MOF材料,具体是以Ti3C2纳米片为固态金属源,HHTP为有机配体,通过Cu2+辅助转化法制备得到,不同种类金属离子间的协同效应可有效提高MOF的电导率、增强MOF的电化学活性;采用旋涂法‑电化学聚合法相结合的方式制备出的TiCu‑HHTP MOF/PPy复合柔性透明电极具有优于单一组分电极的电化学储能性质,以其为基础制备的TiCu‑HHTP MOF/PPy柔性透明全固态超级电容器具有优异的电化学储能性质,在大角度弯折下仍能保持电容稳定。

    一种提高电磁屏蔽效能的可调多级屏蔽方法

    公开(公告)号:CN113133299B

    公开(公告)日:2022-04-15

    申请号:CN202110465304.5

    申请日:2021-04-28

    Abstract: 一种提高电磁屏蔽效能的可调多级屏蔽方法,包括如下步骤:制备得到不同质量的柔性自支撑Ti3C2薄膜;将不同质量的柔性自支撑Ti3C2薄膜进行叠加,测试Ti3C2薄膜不同层数叠加结构的电磁屏蔽效能;根据得到的不同层数叠加结构的电磁屏蔽效能,调节Ti3C2薄膜叠加结构的间距d,测试电磁屏蔽效能,得到电磁屏蔽效能最优时的Ti3C2薄膜叠加结构。本方法具有低成本、低能耗、工艺简易的优点,又达到了提升电磁屏蔽效能的目的。

Patent Agency Ranking