-
公开(公告)号:CN118838740A
公开(公告)日:2024-10-25
申请号:CN202410837345.6
申请日:2024-06-26
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于双重深度Q网络的日志异常预测方法,步骤1、日志首先通过日志解析算法解析为结构化数据,并利用滑动窗口对日志进行分组;步骤2、基于日志序列可构建马尔可夫决策过程,强化学习智能体能够通过MDP过程提取日志中潜在的知识;步骤3、针对状态空间复杂,动作空间有限且离散的MDP过程,使用面向离散控制任务的深度Q网络训练智能体,最终智能体能够对给定的序列作出异常预测,为了学习日志序列之间复杂的相关性和联系使用了强化学习模型,利用强化学习的优势,通过智能体挖掘日志序列之间的顺序信息、拓扑信息等复杂的关系,使正常序列生成智能体能够生成正常日志序列并提取序列潜在的安全系数。