-
公开(公告)号:CN109544530A
公开(公告)日:2019-03-29
申请号:CN201811375758.8
申请日:2018-11-19
Applicant: 南京邮电大学
Abstract: 本发明公开了一种X射线头影测量图像结构特征点自动定位方法,包括双层回归森林模型训练:将从训练图像中提取的外观特征作为输入,训练第一层回归森林模型;将第一层回归森林模型作用于训练图像,获得训练图像对应的第一层偏移距离图;将从第一层偏移距离图中提取的外观特征和训练图像的外观特征作为输入,训练第二层回归森林模型;利用训练好的双层回归森林模型,对待检测图像结构特征点定位。本发明构建双层回归森林模型,通过双层回归森林模型对X射线头影测量图像结构特征点进行自动定位,相较于传统的人工定位,提高了效率,解决了时间,同时大大提高了准确性。
-
公开(公告)号:CN109544530B
公开(公告)日:2022-08-16
申请号:CN201811375758.8
申请日:2018-11-19
Applicant: 南京邮电大学
Abstract: 本发明公开了一种X射线头影测量图像结构特征点自动定位方法,包括双层回归森林模型训练:将从训练图像中提取的外观特征作为输入,训练第一层回归森林模型;将第一层回归森林模型作用于训练图像,获得训练图像对应的第一层偏移距离图;将从第一层偏移距离图中提取的外观特征和训练图像的外观特征作为输入,训练第二层回归森林模型;利用训练好的双层回归森林模型,对待检测图像结构特征点定位。本发明构建双层回归森林模型,通过双层回归森林模型对X射线头影测量图像结构特征点进行自动定位,相较于传统的人工定位,提高了效率,解决了时间,同时大大提高了准确性。
-