-
公开(公告)号:CN113658051B
公开(公告)日:2023-10-13
申请号:CN202110713063.1
申请日:2021-06-25
Applicant: 南京邮电大学
IPC: G06T5/00 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于循环生成对抗网络的图像去雾方法及系统,包括:获取待处理的有雾图像;输入到预先训练好的密集连接循环生成对抗网络,输出无雾图像;所述密集连接循环生成对抗网络包括生成器,生成器包括编码器、转换器和解码器,编码器包括密集连接层,用于提取输入图像的特征,转换器包括过度转换层,用于将编码器阶段提取的特征进行组合,解码器包括密集连接层和缩放卷积神经网络层,密集连接层用于还原图像的原有特征,缩放卷积神经网络层用于去除还原的原有特征的棋盘格效应,得到最终输出的无雾图像。优点:基于循环生成对抗网络进行图像去雾,消除对成对数据集的要求,提高了特征图的利用率,保持网络训练效率,提高生成图像质量。
-
公开(公告)号:CN113658051A
公开(公告)日:2021-11-16
申请号:CN202110713063.1
申请日:2021-06-25
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于循环生成对抗网络的图像去雾方法及系统,包括:获取待处理的有雾图像;输入到预先训练好的密集连接循环生成对抗网络,输出无雾图像;所述密集连接循环生成对抗网络包括生成器,生成器包括编码器、转换器和解码器,编码器包括密集连接层,用于提取输入图像的特征,转换器包括过度转换层,用于将编码器阶段提取的特征进行组合,解码器包括密集连接层和缩放卷积神经网络层,密集连接层用于还原图像的原有特征,缩放卷积神经网络层用于去除还原的原有特征的棋盘格效应,得到最终输出的无雾图像。优点:基于循环生成对抗网络进行图像去雾,消除对成对数据集的要求,提高了特征图的利用率,保持网络训练效率,提高生成图像质量。
-