-
公开(公告)号:CN108555914A
公开(公告)日:2018-09-21
申请号:CN201810742347.1
申请日:2018-07-09
Applicant: 南京邮电大学
IPC: B25J9/16
Abstract: 本发明公开了一种基于腱驱动灵巧手的DNN神经网络自适应控制方法,该方法通过构建n节关节灵巧手手指的末端操作器和外界环境接触时的动力学关系式,然后输入理想力至灵巧手求出灵巧手上对应关节的力矩与灵巧手实际输出的力矩之差;随后基于PID控制器,加入DNN神经网络构建灵巧手手指末端操作器的力控制模型,并将力矩之差输入力控制模型求出第一力矩;接着计算灵巧手中关节变化导致的腱长度变化与末端操作器中执行器的自身变化速率之和;并根据灵巧手的关节力矩阵求得第二力矩;最后将计算得到的第一力矩和第二力矩传给构建的灵巧手动力学模型,得到灵巧手的实际输出力和关节角,实现对灵巧手的力位混合控制;本发明灵巧手控制系统的控制性能稳定。
-
公开(公告)号:CN108555914B
公开(公告)日:2021-07-09
申请号:CN201810742347.1
申请日:2018-07-09
Applicant: 南京邮电大学
IPC: B25J9/16
Abstract: 本发明公开了一种基于腱驱动灵巧手的DNN神经网络自适应控制方法,该方法通过构建n节关节灵巧手手指的末端操作器和外界环境接触时的动力学关系式,然后输入理想力至灵巧手求出灵巧手上对应关节的力矩与灵巧手实际输出的力矩之差;随后基于PID控制器,加入DNN神经网络构建灵巧手手指末端操作器的力控制模型,并将力矩之差输入力控制模型求出第一力矩;接着计算灵巧手中关节变化导致的腱长度变化与末端操作器中执行器的自身变化速率之和;并根据灵巧手的关节力矩阵求得第二力矩;最后将计算得到的第一力矩和第二力矩传给构建的灵巧手动力学模型,得到灵巧手的实际输出力和关节角,实现对灵巧手的力位混合控制;本发明灵巧手控制系统的控制性能稳定。
-